Skip to main content
Log in

Influence of warfarin dose-associated genotypes on the risk of hemorrhagic complications in Chinese patients on warfarin

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

This study was designed to evaluate the effect of the warfarin dose-associated genotypes, CYP2C9*3 (rs1057910), VKORC1 −1639 G/A (rs9923231), and CYP4F2 1347 C/T (rs2108622), on hemorrhagic complications in Han Chinese patients. Consecutively recruited patients requiring more than 1 year of warfarin treatment were followed from the initiation of warfarin anticoagulation for at least 3 months. CYP2C9*3, VKORC1 −1639 G/A, and CYP4F2 1347 C/T were genotyped by sequencing. The association between genotypes and warfarin hemorrhagic complications was evaluated using Cox proportional hazard regression, adjusted for demographic and clinical factors. Of 312 eligible patients obtaining stable warfarin anticoagulation in 3 months, 11 major and 69 minor hemorrhages occurred over 147 person-years. The CYP2C9*3 genotype conferred an increased risk of all [hazard ratio (HR) 3.07, 95 % confidence interval (CI) 1.57–6.01] and minor hemorrhage (HR 3.28, 95 % CI 1.62–6.65), but not major hemorrhage (HR 0.44, 95 % CI 0.04–4.72). CYP2C9*3 also conferred an increased risk of over-anticoagulation with international normalization ratio (INR) ≥4 (HR 2.92, 95 % CI 1.08–7.85). VKORC1 −1639 G/A, and CYP4F2 rs2108622 did not confer significant increase in risk for hemorrhage or over-anticoagulation. Kaplan–Meier curves showed that time to all hemorrhagic events was significantly shorter for patients with CYP2C9*3 genotype than non-carriers (P = 0.001), but not for patients with VKORC1 −1639 G/A or CYP4F2 rs2108622 genotype (P = 0.3 and 0.2). CYP2C9*3 may be the main genetic factor in hemorrhagic complications in Chinese patients under warfarin anticoagulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pirmohamed M. Warfarin: almost 60 years old and still causing problems. Br J Clin Pharmacol. 2006;62:509–11.

    Article  PubMed  Google Scholar 

  2. Budnitz DS, Pollock DA, Weidenbach KN, Mendelsohn AB, Schroeder TJ, Annest JL. National surveillance of emergency department visits for outpatient adverse drug events. JAMA. 2006;296:1858–66.

    Article  PubMed  CAS  Google Scholar 

  3. Lindh JD, Holm L, Dahl ML, Alfredsson L, Rane A. Incidence and predictors of severe bleeding during warfarin treatment. J Thromb Thrombolysis. 2008;25:151–9.

    Article  PubMed  CAS  Google Scholar 

  4. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, Rettie AE. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA. 2002;287:1690–8.

    Article  PubMed  CAS  Google Scholar 

  5. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352:2285–93.

    Article  PubMed  CAS  Google Scholar 

  6. D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005;105:645–9.

    Article  PubMed  Google Scholar 

  7. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, Wu JY, Chen YT. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet. 2005;14:1745–51.

    Article  PubMed  CAS  Google Scholar 

  8. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106:2329–33.

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG, Pengo V, Barban M, Padrini R, Ieiri I, Otsubo K, Kashima T, Kimura S, Kijima S, Echizen H. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics. 2006;16:101–10.

    Article  PubMed  CAS  Google Scholar 

  10. Kimura R, Miyashita K, Kokubo Y, Akaiwa Y, Otsubo R, Nagatsuka K, Otsuki T, Okayama A, Minematsu K, Naritomi H, Honda S, Tomoike H, Miyata T. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res. 2007;120:181–6.

    Article  PubMed  CAS  Google Scholar 

  11. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, Milligan PE, Grice G, Lenzini P, Rettie AE, Aquilante CL, Grosso L, Marsh S, Langaee T, Farnett LE, Voora D, Veenstra DL, Glynn RJ, Barrett A, McLeod HL. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84:326–31.

    Article  PubMed  CAS  Google Scholar 

  12. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S, Holm L, McGinnis R, Rane A, Deloukas P. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113:784–92.

    Article  PubMed  CAS  Google Scholar 

  13. Lubitz SA, Scott SA, Rothlauf EB, Agarwal A, Peter I, Doheny D, Van Der Zee S, Jaremko M, Yoo C, Desnick RJ, Halperin JL. Comparative performance of gene-based warfarin dosing algorithms in a multiethnic population. J Thromb Haemost. 2010;8:1018–26.

    PubMed  CAS  Google Scholar 

  14. Caldwell MD, Awad T, Johnson JA, Gage BF, Falkowski M, Gardina P, Hubbard J, Turpaz Y, Langaee TY, Eby C, King C, Brower A, Schmelzer JR, Glurich I, Vidaillet HJ, Yale SH, Zhang KQ, Berg RL, Burmester JK. CYP4F2 genetic variant alters required warfarin dose. Blood. 2008;111:4106–12.

    Article  PubMed  CAS  Google Scholar 

  15. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, Whittaker P, Ranganath V, Kumanduri V, McLaren W, Holm L, Lindh J, Rane A, Wadelius M, Deloukas P. A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5:e1000433.

    Article  PubMed  Google Scholar 

  16. Levine MN, Raskob G, Beyth RJ, Kearon C, Schulman S. Hemorrhagic complications of anticoagulant treatment: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest. 2004;126:287S–310S.

    Article  PubMed  CAS  Google Scholar 

  17. Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood. 2000;96:1816–9.

    PubMed  CAS  Google Scholar 

  18. Joffe HV, Xu R, Johnson FB, Longtine J, Kucher N, Goldhaber SZ. Warfarin dosing and cytochrome P450 2C9 polymorphisms. Thromb Haemost. 2004;91:1123–8.

    PubMed  CAS  Google Scholar 

  19. Lindh JD, Lundgren S, Holm L, Alfredsson L, Rane A. Several-fold increase in risk of overanticoagulation by CYP2C9 mutations. Clin Pharmacol Ther. 2005;78:540–50.

    Article  PubMed  CAS  Google Scholar 

  20. Peyvandi F, Spreafico M, Siboni SM, Moia M, Mannucci PM. CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin Pharmacol Ther. 2004;75:198–203.

    Article  PubMed  CAS  Google Scholar 

  21. Steward DJ, Haining RL, Henne KR, Davis G, Rushmore TH, Trager WF, Rettie AE. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics. 1997;7:361–7.

    Article  PubMed  CAS  Google Scholar 

  22. Schelleman H, Chen Z, Kealey C, Whitehead AS, Christie J, Price M, Brensinger CM, Newcomb CW, Thorn CF, Samaha FF, Kimmel SE. Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther. 2007;81:742–7.

    Article  PubMed  CAS  Google Scholar 

  23. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, Kim RB, Roden DM, Stein CM. Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med. 2008;358:999–1008.

    Article  PubMed  CAS  Google Scholar 

  24. Meckley LM, Wittkowsky AK, Rieder MJ, Rettie AE, Veenstra DL. An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients. Thromb Haemost. 2008;100:229–39.

    PubMed  CAS  Google Scholar 

  25. Jorgensen AL, Al-Zubiedi S, Zhang JE, Keniry A, Hanson A, Hughes DA, Eker D, Stevens L, Hawkins K, Toh CH, Kamali F, Daly AK, Fitzmaurice D, Coffey A, Williamson PR, Park BK, Deloukas P, Pirmohamed M. Genetic and environmental factors determining clinical outcomes and cost of warfarin therapy: a prospective study. Pharmacogenet Genomics. 2009;19:800–12.

    Article  PubMed  CAS  Google Scholar 

  26. Molden E, Okkenhaug C. Ekker Solberg E. Increased frequency of CYP2C9 variant alleles and homozygous VKORC1*2B carriers in warfarin-treated patients with excessive INR response. Eur J Clin Pharmacol. 2010;66:525–30.

    Article  PubMed  CAS  Google Scholar 

  27. Hylek EM, Go AS, Chang Y, Jensvold NG, Henault LE, Selby JV, Singer DE. Effect of intensity of oral anticoagulation on stroke severity and mortality in atrial fibrillation. N Engl J Med. 2003;349:1019–26.

    Article  PubMed  CAS  Google Scholar 

  28. Hylek EM, Skates SJ, Sheehan MA, Singer DE. An analysis of the lowest effective intensity of prophylactic anticoagulation for patients with nonrheumatic atrial fibrillation. N Engl J Med. 1996;335:540–6.

    Article  PubMed  CAS  Google Scholar 

  29. Limdi NA, Veenstra DL. Warfarin pharmacogenetics. Pharmacotherapy. 2008;28:1084–97.

    Article  PubMed  CAS  Google Scholar 

  30. Aithal GP, Day CP, Kesteven PJ, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353:717–9.

    Article  PubMed  CAS  Google Scholar 

  31. Ogg MS, Brennan P, Meade T, Humphries SE. CYP2C9*3 allelic variant and bleeding complications. Lancet. 1999;354:1124.

    Article  PubMed  CAS  Google Scholar 

  32. Margaglione M, Colaizzo D, D’Andrea G, Brancaccio V, Ciampa A, Grandone E, Di Minno G. Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost. 2000;84:775–8.

    PubMed  CAS  Google Scholar 

  33. Limdi NA, McGwin G, Goldstein JA, Beasley TM, Arnett DK, Adler BK, Baird MF, Acton RT. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther. 2008;83:312–21.

    Article  PubMed  CAS  Google Scholar 

  34. Vorob’eva NM, Panchenko EP, Dobrovol’skii AB, Titaeva EV, Khasanova ZB, Konovalova NV, Postnov A, Kirienko AI. Polymorphisms of genes CYP2C9 and VKORC1 in patients with venous thromboembolic complications in Moscow population: effects on stability of anticoagulant therapy and frequency of hemorrhage. Ter Arkh. 2011;83:59–65.

    PubMed  Google Scholar 

  35. Suzuki S, Yamashita T, Kato T, Fujino T, Sagara K, Sawada H, Aizawa T, Fu LT. Incidence of major bleeding complication of warfarin therapy in Japanese patients with atrial fibrillation. Circ J. 2007;71:761–5.

    Article  PubMed  CAS  Google Scholar 

  36. Dong L, Shi YK, Tian ZP, Ma JY, Wang X, Yi J. Low intensity anticoagulation therapy after mechanical heart valve replacement. Zhonghua Wai Ke Za Zhi. 2003;41:250–2.

    PubMed  Google Scholar 

  37. Veenstra DL, You JH, Rieder MJ, Farin FM, Wilkerson HW, Blough DK, Cheng G, Rettie AE. Association of vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics. 2005;15:687–91.

    Article  PubMed  CAS  Google Scholar 

  38. Wen MS, Lee M, Chen JJ, Chuang HP, Lu LS, Chen CH, Lee TH, Kuo CT, Sun FM, Chang YJ, Kuan PL, Chen YF, Charng MJ, Ray CY, Wu JY, Chen YT. Prospective study of warfarin dosage requirements based on CYP2C9 and VKORC1 genotypes. Clin Pharmacol Ther. 2008;84:83–9.

    Article  PubMed  CAS  Google Scholar 

  39. Liu Y, Yang J, Xu Q, Xu B, Gao L, Zhang Y, Zhang Y, Wang H, Lu C, Zhao Y, Yin T. Comparative performance of warfarin pharmacogenetic algorithms in Chinese patients. Thromb Res. 2012;130:435–40.

    Article  PubMed  CAS  Google Scholar 

  40. Cen HJ, Zeng WT, Leng XY, Huang M, Chen X, Li JL, Huang ZY, Bi HC, Wang XD, He YL, He F, Zhou RN, Zheng QS, Zhao LZ. CYP4F2 rs2108622: a minor significant genetic factor of warfarin dose in Han Chinese patients with mechanical heart valve replacement. Br J Clin Pharmacol. 2010;70:234–40.

    Article  PubMed  CAS  Google Scholar 

  41. Ansell JE, Oertel LB, Wittkowsky AK. Managing oral anticoagulation therapy: clinical and operational guidelines. St Louis: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  42. Fihn SD, McDonell M, Martin D, Henikoff J, Vermes D, Kent D, White RH. Risk factors for complications of chronic anticoagulation. A multicenter study. Warfarin Optimized Outpatient Follow-up Study Group. Ann Intern Med. 1993;118:511–20.

    PubMed  CAS  Google Scholar 

  43. Inciardi JF. Assessing random error in the international normalized ratio. Ther Drug Monit. 1994;16:425–6.

    Article  PubMed  CAS  Google Scholar 

  44. Huang SW, Chen HS, Wang XQ, Huang L, Xu DL, Hu XJ, Huang ZH, He Y, Chen KM, Xiang DK, Zou XM, Li Q, Ma LQ, Wang HF, Chen BL, Li L, Jia YK, Xu XM. Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics. 2009;19:226–34.

    Article  PubMed  CAS  Google Scholar 

  45. Yin T, Miyata T. Warfarin dose and the pharmacogenomics of CYP2C9 and VKORC1 - rationale and perspectives. Thromb Res. 2007;120:1–10.

    Article  PubMed  CAS  Google Scholar 

  46. Tham LS, Goh BC, Nafziger A, Guo JY, Wang LZ, Soong R, Lee SC. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther. 2006;80:346–55.

    Article  PubMed  CAS  Google Scholar 

  47. Li C, Schwarz UI, Ritchie MD, Roden DM, Stein CM, Kurnik D. Relative contribution of CYP2C9 and VKORC1 genotypes and early INR response to the prediction of warfarin sensitivity during initiation of therapy. Blood. 2009;113:3925–30.

    Article  PubMed  CAS  Google Scholar 

  48. Ferder NS, Eby CS, Deych E, Harris JK, Ridker PM, Milligan PE, Goldhaber SZ, King CR, Giri T, McLeod HL, Glynn RJ, Gage BF. Ability of VKORC1 and CYP2C9 to predict therapeutic warfarin dose during the initial weeks of therapy. J Thromb Haemost. 2010;8:95–100.

    Article  PubMed  CAS  Google Scholar 

  49. McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE. CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol. 2009;75:1337–46.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 30971259). We are grateful to all the patients who participated in the study. We thank Ting Yang for her untiring efforts with patient recruitment and follow-up, and the staff of the Institute of Geriatric Cardiology, General Hospital of Chinese People’s Liberation Army for their help with identification of potential participants.

Conflict of interest

There are no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyi Lu or Tong Yin.

Additional information

Cong Ma and Yuxiao Zhang contributed equally to the manuscript as co-first authors.

About this article

Cite this article

Ma, C., Zhang, Y., Xu, Q. et al. Influence of warfarin dose-associated genotypes on the risk of hemorrhagic complications in Chinese patients on warfarin. Int J Hematol 96, 719–728 (2012). https://doi.org/10.1007/s12185-012-1205-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1205-8

Keywords

Navigation