Skip to main content

Advertisement

Log in

Cardiac toxicity of high-dose cyclophosphamide and melphalan in patients with multiple myeloma treated with tandem autologous hematopoietic stem cell transplantation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Tandem autologous hematopoetic stem cell transplantation (HSCT) is an effective treatment in patients with multiple myeloma (MM). Patients receive high-dose cyclophosphamide (CY) followed by two myeloablative dosages of melphalan (MEL). Cardiotoxicity treatment related data are scanty. In 30 patients with MM chemotherapy was followed by high-dose CY (cycle CY), and two autologous tandem HSCT treatments with MEL (cycles MEL I and MEL II). During each 15-day treatment troponin I (TnI), brain natriuretic peptide (BNP) and endothelin-1 (ET-1) were controlled at six time points. All patients underwent conventional and tissue Doppler echocardiography prior to CY therapy (Eho 0), before cycle MEL I (Eho 1), before cycle MEL II (Eho 2), and 3 months after the completion of therapy (Eho 3). None of the patients developed clinical signs of heart failure. The peak TnI concentrations were noted at days 8, 11, and 15 during all three chemotherapy cycles. During all three cycles there was a significant increase in baseline BNP concentrations and BNP levels measured at day 1 after treatment with CY and MEL (CY: P = 0.0001, MEL I: P = 0.001, MEL II: P = 0.001). The highest BNP concentration occurred during CY treatment (0.517 ± 0.391 μg/L). During cycles MEL I and MEL II we noted the peak BNP concentrations at day 4 following chemotherapy (MEL I 0.376 ± 0.418 μg/L; MEL II 0.363 ± 0.379 μg/L). During all three cycles the highest ET-1 levels occurred at day 1 after chemotherapy (CY 1.146 ± 1.313 ng/L; MEL I 1.054 ± 2.242 ng/L; MEL II 0.618 ± 0.539 ng/L). A significant increase in ET-1 concentrations relative to the basal values occurred only in cycle MEL II (P = 0.003). The duration of wave a in the Doppler pulmonary vein flow increased significantly (Eho 0/Eho 1: P = 0.008, Eho 0/Eho 3: P = 0.026). There was a significant decrease in the A/a ratio in flow velocities during chemotherapy (Eho 0/Eho 1: P = 0.002, Eho 0/Eho 3: P < 0.0001). Early diastolic tissue Doppler velocities (E m) decreased significantly during individual cycles of chemotherapy (P = 0.006). A significant post-treatment increase in the incidence of mitral regurgitation was observed (Eho 0/Eho 3: P = 0.003). Treatment of MM patients with tandem autologous HSCT is cardiotoxic. Our patients did not develop clinically overt heart failure or myocardial necrosis. Increased plasma levels of BNP and ET-1 were compatible with transient neurohormonal activation of heart failure. Doppler echocardiography studies revealed worsening of left ventricular diastolic function and occurrence of functional mitral regurgitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Attal M, Harousseau J-L, Stoppa A-M, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med. 1996;335:91–7.

    Article  CAS  PubMed  Google Scholar 

  2. Barlogie B, Jagannath S, Vesole DH, et al. Superiority of tandem autologous transplantation over standard therapy for previously untreated multiple myeloma. Blood. 1997;89:789–93.

    CAS  PubMed  Google Scholar 

  3. Attal M, Harousseau J-L, Facon T, et al. Single versus double autologous stem-cell transplantation for multiple myeloma. N Engl J Med. 2003;349:2495–502.

    Article  CAS  PubMed  Google Scholar 

  4. Schimmel KJ, Richel DJ, van den Brink RB, et al. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev. 2004;30(2):181–91.

    Article  CAS  PubMed  Google Scholar 

  5. Gottdiender JS, Appelbaum FR, Ferrans VJ, Diesseroth A, Ziegler J. Cardiotoxicity associated with high dose cyclophosphamide therapy. Arch Intern Med. 1981;141:758–63.

    Article  Google Scholar 

  6. Goldberg MA, Antin JH, Guinan EC. Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood. 1986;68:1114–8.

    CAS  PubMed  Google Scholar 

  7. Braverman AC, Antin JH, Plappert MT. Cyclophosphamide cardiotoxicity in bone marrow transplantation: a prospective evaluation of new dosing regimens. J Clin Oncol. 1991;9:1215–33.

    Article  CAS  PubMed  Google Scholar 

  8. McDonagh TA, Robb SD, Murdoch DR, et al. Biochemical detection of left-ventricular systolic dysfunction. Lancet. 1998;351:9–13.

    Article  CAS  PubMed  Google Scholar 

  9. Tsuruda T, Boerigatter G, Huntley BK, Noser Ja, Cataliotti A. BNP is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res. 2002;91:1127–34.

    Article  CAS  PubMed  Google Scholar 

  10. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med. 2002;347:161–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mueller C, Scholer A, Laule-Kilian K, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med. 2004;350:647–54.

    Article  CAS  PubMed  Google Scholar 

  12. Lubien E, DeMaria A, Krishnaswamy P, Clopton P, Koon J, Kazanegra R, et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction. Comparison with doppler velocity recordings. Circulation. 2002;105:595–601.

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi H, Yoshida J, Yamamoto K, et al. Elevation of brain natriuretic peptide is a hallmark of diastolic heart failure independent of ventricular hypertrophy. J Am Coll Cardiol. 2004;43:55–60.

    Article  CAS  PubMed  Google Scholar 

  14. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988;332:411–5.

    Article  CAS  PubMed  Google Scholar 

  15. Burrell KM, Molenaar P, Dawson PJ, Kaumann AS. Contractile and arrhythmic effects of endothelin receptor agonists in human heart in vitro: blockade with SB 209670. J Pharmacol Exp Ther. 2000;292:449–59.

    CAS  PubMed  Google Scholar 

  16. Howard PG, Plumpron C, Davenport AP. Anatomical localization and pharmacological activity of mature endothelins and their precursors in human vascular tissue. J Hypertens. 1992;10:1379–86.

    Article  CAS  PubMed  Google Scholar 

  17. Wei C-M, Lerman A, Rodeheffer RJ, McGregor CGA, Brandt RR. Wright S in sod. Endothelin in human congestive heart failure. Circulation. 1994;89:1580–6.

    Article  CAS  PubMed  Google Scholar 

  18. Galindo-Fraga A, Arrieta O, Castillo-Martinez L, Narvaez R, Oseguera-Moguel J, Orea-Tejeda A. Elevation of plasmatic endothelin in patients with heart failure. Arch Med Res. 2003;34:367–72.

    Article  CAS  PubMed  Google Scholar 

  19. Giannuzzi P, Temporelli PL, Bosimini E, Silva P, Imparato A, Corra U, et al. Independent and incremental prognostic value of Doppler-derived mitral deceleration time of early filling in both symptomatic and asymptomatic patients with left ventricular dysfunction. J Am Coll Cardiol. 1996;28:383–90.

    Article  CAS  PubMed  Google Scholar 

  20. Suzuki J, Yanagisawa A, Shigejama T, et al. Early detection of anthracycline-induced cardiotoxicity by radionuclide angiocardiography. Angiology. 1999;50:37–45.

    Article  CAS  PubMed  Google Scholar 

  21. Cheitlin MD, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, Davis JL, et al. ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2003;108(9):1146–62.

    Article  PubMed  Google Scholar 

  22. Garcia MJ, Thomas JD, Klein AL. New Doppler echocardiographic applications for the study of diastolic function. J Am Coll Cardiol. 1998;32:865–75.

    Article  CAS  PubMed  Google Scholar 

  23. Katrukha AG, Bereznikova AV, Filatov FL, et al. Degradation of troponin I: implication for reliable immunodetection. Clin Chem. 1998;44:2433–40.

    CAS  PubMed  Google Scholar 

  24. Maisel A. B-type natriuretic peptide levels: diagnostic and therapeutic potential. Cardiovasc Toxicol. 2001;1(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  25. Teicholz LE, Kreulen T, Herman MV, Gorlin R. Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence or absence of asynergy. Am J Cardiol 1976;37:7.

    Article  Google Scholar 

  26. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents. Drug Saf. 2000;22(4):263–302.

    Article  CAS  PubMed  Google Scholar 

  27. Ryberg M, Nielsen D, Skovsgaard T, Hansen J, Jensen BV. Epirubicine cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J Clin Oncol. 1998;16:3502–8.

    Article  CAS  PubMed  Google Scholar 

  28. Singal PA, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med. 1998;339:900–5.

    Article  CAS  PubMed  Google Scholar 

  29. Morandi P, Ruffini PA, Benvenuto GM, et al. Serum cardiac troponin I level and ECG/Echo monitoring in breast cancer patients undergoing high dose cyclophosphamide. Bone Marrow Transpl. 2001;28:277–82.

    Article  CAS  Google Scholar 

  30. Morandi P, Ruffini PA, Benvenuto GM, et al. Cardiac toxicity of high dose chemotherapy. Bone Marrow Transpl. 2005;35:323–34.

    Article  CAS  Google Scholar 

  31. Auner HW, Tinchon C, Brezinschek RI, et al. Monitoring of cardiac function by serum cardiac troponin T levels, ventricular repolarisation indices and echocardiography after conditioning with fractionated total body irradiation and high-dose cyclophosphamide. Eur J Haematol. 2002;69:1–6.

    Article  CAS  PubMed  Google Scholar 

  32. Snowden JA, Hill GR, Hunt P, Carnoutsos S, Spearing RL, Espiner E, et al. Assessment of cardiotoxicity during haemopoietic stem cell transplantation with plasma brain natriuretic peptide. Bone Marrow Transpl. 2000;26:309–13.

    Article  CAS  Google Scholar 

  33. Fraga GA, Arrieta O, Martinez CA, et al. Elevation of plasmatic endothelin in patients with heart failure. Arch Med Research 2003;347–72.

  34. Yip KH, Chiung JW, Hsueh WC, et al. Prognostic value of circulating levels of endothelin-I in patients after acute myocardial infarction undergoing primary coronary angioplasty. Chest. 2005;127:1491–7.

    Article  CAS  PubMed  Google Scholar 

  35. De Artinano AA, Gonzales VI. Endothelial dysfunction and hypertensive vasoconstriction. Pharmacol Res. 1999;40:113–24.

    Article  PubMed  Google Scholar 

  36. Martino M, Morabito F, Messina G, Irrera G, Pucci G, Iacopino P. Fractionated infusions of cryopreserved stem cells may prevent DMSO-induced major cardiac complications in graft recipients. Haematologica. 1996;81(1):59–61.

    CAS  PubMed  Google Scholar 

  37. Zenhaeusern R, Tobler A, Leoncini L, Hess OM, Ferrari P. Fatal cardiac arrhythmia after infusion of DMSO-cryopreserved hematopoetic stem cells in a patient with severe primary cardiac amyloidosis and end-stage renal failure. Ann Hematol. 2000;79(9):523–6.

    Article  Google Scholar 

  38. Yamamoto R, Kanda Y, Matsuyama T, et al. Myopericarditis caused by cyclophosphamide used to mobilize peripheral blood stem cells in a myeloma patient with renal failure. Bone Marrow Transpl. 2000;26:685–8.

    Article  CAS  Google Scholar 

  39. Mori T, Yanagi N, Maruyama T, Gondo H, Okamura T, Kaji Y, et al. Left ventricular diastolic dysfunction induced by cyclophosphamide in blood stem cell transplantation. Jpn Heart J. 2002;43:249–61.

    Article  PubMed  Google Scholar 

  40. Allen J, Thomson JDR, Lewis IJ, Gibbs JL. Mitral regurgitation after anthracycline treatment for childhood malignancy. Heart. 2001;85:430–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tassan-Mangina S, Codorean D, Metivier M, Costa B, Himberlin C, Jouannaud C, et al. Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during prospective study. Eur J Echocardiography. 2006;7:141–6.

    Article  Google Scholar 

  42. Tassan-Mangina S, Brasselet C, Nazeyrollas P, Collot-Bigot M, Costa B, Blaise AM, et al. Value of pulsed Doppler tissue imaging for early detection of myocardial dysfunction with antracyclines. Arch Mal Coeur Vaiss. 2002;95:263–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samo Zver.

About this article

Cite this article

Zver, S., Zadnik, V., Černelč, P. et al. Cardiac toxicity of high-dose cyclophosphamide and melphalan in patients with multiple myeloma treated with tandem autologous hematopoietic stem cell transplantation. Int J Hematol 88, 227–236 (2008). https://doi.org/10.1007/s12185-008-0112-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-008-0112-5

Keywords

Navigation