Skip to main content

Advertisement

Log in

Quadriceps Dysfunction Following Joint Preservation Surgery: A Review of the Pathophysiologic Basis and Mitigation Strategies

  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

To characterize quadriceps muscle dysfunction associated with knee joint preservation surgery, with a focus on its pathophysiology and promising approaches to mitigate its impact on clinical outcomes.

Recent Findings

Quadriceps dysfunction (QD) associated with knee joint preservation surgery results from a complex interplay of signaling, related to changes within the joint and from those involving the overlying muscular envelope. Despite intensive rehabilitation regimens, QD may persist for many months postoperatively and negatively impact clinical outcomes associated with various surgical procedures. These facts underscore the need for continued investigation into the potential detrimental effects of regional anesthetic and intraoperative tourniquet use on postoperative quadriceps function, with an outward focus on innovation within the field of postoperative rehabilitation. Neuromuscular stimulation, nutritional supplementation, cryotherapy, blood flow restriction (BFR), and open-chain exercises are all potential additions to postoperative regimens. There is compelling literature to suggest that these modalities are efficacious and may diminish the magnitude and duration of postoperative QD.

Summary

A clear understanding of QD, with respect to its pathophysiology, should guide perioperative treatment and rehabilitation strategies and influence ongoing rehabilitation-based research and innovation. Moreover, clinicians must appreciate the magnitude of QD’s effect on diminished clinical outcomes, risk for re-injury and patients’ ability (or inability) to return to pre-injury level of activity following knee joint preservation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blackburn JT, Pietrosimone B, Harkey MS, Luc BA, Pamukoff DN. Quadriceps function and gait kinetics after anterior cruciate ligament reconstruction. Med Sci Sports Exerc. 2016;48:1664–70. https://doi.org/10.1249/MSS.0000000000000963

  2. Pamukoff DN, Montgomery MM, Choe KH, Moffit TJ, Garcia SA, Vakula MN. Bilateral Alterations in running mechanics and quadriceps function following unilateral anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2018;48:960–7. https://doi.org/10.2519/jospt.2018.8170.

    Article  PubMed  Google Scholar 

  3. Chmielewski TL, Wilk KE, Snyder-Mackler L. Changes in weight-bearing following injury or surgical reconstruction of the ACL: relationship to quadriceps strength and function. Gait Posture. 2002;16:87–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0966636201002028. Accessed 1 Sept 2022.

  4. Severyns M, Plawecki S, Odri G-A, Vendeuvre T, Depiesse F, Flez J-F, et al. Correlation of isokinetic testing and ACL failure with the short graft tape suspension technique at six months. Arthros Sports Medi Rehab [Internet]. 2022;4(2):e585-e590. https://doi.org/10.1016/j.asmr.2021.11.020

  5. Segal NA, Glass NA, Felson DT, Hurley M, Yang M, Nevitt M, et al. Effect of quadriceps strength and proprioception on risk for knee osteoarthritis. Med Sci Sports Exerc. 2010;42:2081–8. Available from: https://journals.lww.com/00005768-201011000-00015. Accessed 1 Sept 2022.

  6. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg MA. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Delaware-Oslo ACL cohort study. Br J Sports Med. 2016;50:804–8. https://doi.org/10.1136/bjsports-2016-096031

  7. Hart JM, Pietrosimone B, Hertel J, Ingersoll CD. Quadriceps activation following knee injuries: a systematic review. J Athl Train. 2010;45:87–97. Available from: https://meridian.allenpress.com/jat/article/45/1/87/111163/Quadriceps-Activation-Following-Knee-Injuries-A. Accessed 2 Sept 2022.

  8. Thomas AC, Wojtys EM, Brandon C, Palmieri-Smith RM. Muscle atrophy contributes to quadriceps weakness after anterior cruciate ligament reconstruction. J Sci Med Sport. 2016;19:7–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S144024401500002X. Accessed 1 Sept 2022.

  9. Palmieri-Smith RM, Villwock M, Downie B, Hecht G, Zernicke R. Pain and effusion and quadriceps activation and strength. J Athl Train. 2013;48:186–91. Available from: https://meridian.allenpress.com/jat/article/48/2/186/111312/Pain-and-Effusion-and-Quadriceps-Activation-and. Accessed 1 Sept 2022.

  10. Williams GN, Barrance PJ, Snyder-Mackler L, Buchanan TS. Altered quadriceps control in people with anterior cruciate ligament deficiency. Med Sci Sports Exerc. 2004;36:1089–97. Available from: http://journals.lww.com/00005768-200407000-00001. Accessed 1 Sept 2022.

  11. Kuenze CM, Hertel J, Weltman A, Diduch D, Saliba SA, Hart JM. Persistent neuromuscular and corticomotor quadriceps asymmetry after anterior cruciate ligament reconstruction. J Athl Train. 2015;50:303–12. Available from: https://meridian.allenpress.com/jat/article/50/3/303/112655/Persistent-Neuromuscular-and-Corticomotor. Accessed 1 Sept 2022.

  12. Wojtys EM, Huston LJ. Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med. 1994;22:89–104.

    Article  CAS  PubMed  Google Scholar 

  13. Harkey MS, Gribble PA, Pietrosimone BG. Disinhibitory interventions and voluntary quadriceps activation: a systematic review. J Athl Train. 2014;49:411–21. Available from: https://meridian.allenpress.com/jat/article/49/3/411/191361/Disinhibitory-Interventions-and-Voluntary. Accessed 1 Sept 2022.

  14. Pietrosimone BG, Lepley AS, Ericksen HM, Gribble PA, Levine J. Quadriceps strength and corticospinal excitability as predictors of disability after anterior cruciate ligament reconstruction. J Sport Rehabil. 2013;22:1–6. Available from: https://journals.humankinetics.com/view/journals/jsr/22/1/article-p1.xml. Accessed 1 Sept 2022.

  15. Keays SL, Bullock-Saxton J, Keays AC. Strength and function before and after anterior cruciate ligament reconstruction. Clin Orthop Relat Res. 2000;373:174–83. https://journals.lww.com/clinorthop/fulltext/2000/04000/strength_and_function_before_and_after_anterior.21.aspx. Accessed 17 Sept 2022.

  16. Burgi CR, Peters S, Ardern CL, Magill JR, Gomez CD, Sylvain J, et al. Which criteria are used to clear patients to return to sport after primary ACL reconstruction? A scoping review. Br J Sports Med. 2019;53:1154–61. https://doi.org/10.1136/bjsports-2018-099982.

    Article  PubMed  Google Scholar 

  17. van Melick N, van Cingel REH, Brooijmans F, Neeter C, van Tienen T, Hullegie W, et al. Evidence-based clinical practice update: practice guidelines for anterior cruciate ligament rehabilitation based on a systematic review and multidisciplinary consensus. Br J Sports Med. 2016;50:1506–15. https://doi.org/10.1136/bjsports-2015-095898.

    Article  PubMed  Google Scholar 

  18. Schmitt LC, Paterno MV, Hewett TE. The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2012;42:750–9. https://doi.org/10.2519/jospt.2012.4194.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Toth MJ, Tourville TW, Voigt TB, Choquette RH, Anair BM, Falcone MJ, et al. Utility of neuromuscular electrical stimulation to preserve quadriceps muscle fiber size and contractility after anterior cruciate ligament injuries and reconstruction: a randomized, sham-controlled, blinded trial. Am J Sports Med. 2020;48:2429–37. https://doi.org/10.1177/0363546520933622.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ebert JR, Smith A, Edwards PK, Ackland TR. The progression of isokinetic knee strength after matrix-induced autologous chondrocyte implantation: implications for rehabilitation and return to activity. J Sport Rehabil. 2014;23:244–58. https://doi.org/10.1123/JSR.2014-0159

  21. Appell H-J, Gloser S, Duarte JAR, Zellner A, Soares JMC. Skeletal muscle damage during tourniquet-induced ischaemia: the initial step towards atrophy after orthopaedic surgery? Eur J Appl Physiol. 1993;67:342–7. Available from: http://link.springer.com/10.1007/BF00357633. Accessed 1 Sept 2022.

  22. Baumeister J, Reinecke K, Schubert M, Weiß M. Altered electrocortical brain activity after ACL reconstruction during force control. J Orthop Res. 2011;29:1383–9. https://doi.org/10.1002/jor.21380.

    Article  PubMed  Google Scholar 

  23. Akima H, Hioki M, Furukawa T. Effect of arthroscopic partial meniscectomy on the function of quadriceps femoris. Knee Surg Sports Traumatol Arthr. 2008;16:1017–25. Available from: http://link.springer.com/10.1007/s00167-008-0601-3. Accessed 12 Aug 2022.

  24. Glatthorn JF, Berendts AM, Bizzini M, Munzinger U, Maffiuletti NA. Neuromuscular function after arthroscopic partial meniscectomy. Clin Orthop Relat Res. 2010;468:1336–43. Available from: https://journals.lww.com/00003086-201005000-00022. Accessed 12 Aug 2022.

  25. Kent-Braun JA, Le Blanc R. Quantitation of central activation failure during maximal voluntary contractions in humans. Muscle Nerve. 1996;19:861–9. https://doi.org/10.1002/(SICI)1097-4598(199607)19:7%3c861::AID-MUS8%3e3.0.CO;2-7.

    Article  CAS  PubMed  Google Scholar 

  26. Dunn WR, Spindler KP, Annunziato A, Wolf BR, Andrish JT, et al. Predictors of activity level 2 years after anterior cruciate ligament reconstruction (ACLR): a Multicenter Orthopaedic Outcomes Network (MOON) ACLR cohort study. Am J Sports Med. 2010;38:2040–50. https://doi.org/10.1177/0363546510370280.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Eitzen I, Holm I, Risberg MA. Preoperative quadriceps strength is a significant predictor of knee function two years after anterior cruciate ligament reconstruction. British Journal of Sports Medicine. 2009;43:371–6. https://doi.org/10.1136/bjsm.2008.057059.

    Article  CAS  PubMed  Google Scholar 

  28. Veldhuizen J, Verstappen F, Vroemen J, Kuipers H, Greep J. Functional and morphological adaptations following four weeks of knee immobilization. Int J Sports Med. 1993;14:283–7. https://doi.org/10.1055/s-2007-1021178.

    Article  CAS  PubMed  Google Scholar 

  29. Hopkins JT, Ingersoll CD. Arthrogenic muscle inhibition: a limiting factor in joint rehabilitation. J Sport Rehabil. 2000;9:135–59. Available from: https://journals.humankinetics.com/view/journals/jsr/9/2/article-p135.xml. Accessed 13 Aug 2022.

  30. Sonnery-Cottet B, Saithna A, Quelard B, Daggett M, Borade A, Ouanezar H, et al. Arthrogenic muscle inhibition after ACL reconstruction: a scoping review of the efficacy of interventions. Br J Sports Med. 2019;53:289–98. https://doi.org/10.1136/bjsports-2017-098401.

    Article  PubMed  Google Scholar 

  31. Hurley MV. The effects of joint damage on muscle function, proprioception and rehabilitation. Man Ther. 1997;2:11–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1356689X97902812. Accessed 1 Aug 2022.

  32. Héroux ME, Tremblay F. Corticomotor excitability associated with unilateral knee dysfunction secondary to anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthr. 2006;14:823–33 (Available from: http://link.springer.com/10.1007/s00167-006-0063-4).

    Article  Google Scholar 

  33. Fremerey RW, Lobenhoffer P, Zeichen J, Skutek M, Bosch U, Tscherne H. Proprioception after rehabilitation and reconstruction in knees with deficiency of the anterior cruciate ligament: a PROSPECTIVE, LONGITUDINAL STUDY. The Journal of Bone and Joint Surgery British volume. 2000;82-B:801–6. https://doi.org/10.1302/0301-620X.82B6.0820801.

    Article  Google Scholar 

  34. Relph N, Herrington L, Tyson S. The effects of ACL injury on knee proprioception: a meta-analysis. Physiotherapy. 2014;100:187–95 (Available from: https://linkinghub.elsevier.com/retrieve/pii/S003194061300117X).

    Article  CAS  PubMed  Google Scholar 

  35. Fleming JD, Ritzmann R, Centner C. Effect of an anterior cruciate ligament rupture on knee proprioception within 2 years after conservative and operative treatment: a systematic review with meta-analysis. Sports Med. 2022;52:1091–102. Available from: https://link.springer.com/10.1007/s40279-021-01600-z. Accessed 14 Jul 2022.

  36. Baron JE, Parker EA, Duchman KR, Westermann RW. Perioperative and postoperative factors influence quadriceps atrophy and strength after ACL reconstruction: a systematic review. Orthop J Sports Med. 2020;8(6). https://doi.org/10.1177/2325967120930296

  37. Everhart JS, Hughes L, Abouljoud MM, Swank K, Lewis C, Flanigan DC. Femoral nerve block at time of ACL reconstruction causes lasting quadriceps strength deficits and may increase short-term risk of re-injury. Knee Surg Sports Traumatol Arthrosc. 2020;28:1894–900. Available from: http://link.springer.com/10.1007/s00167-019-05628-7. Accessed 1 Sept 2022.

  38. Xerogeanes JW. Quadriceps tendon graft for anterior cruciate ligament reconstruction: the graft of the future! Arthroscopy. 2019;35:696–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0749806319300441. Accessed 16 Jul 2022.

  39. Johnston PT, McClelland JA, Feller JA, Webster KE. Knee muscle strength after quadriceps tendon autograft anterior cruciate ligament reconstruction: systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2021;29:2918–33. Available from: https://link.springer.com/10.1007/s00167-020-06311-y. Accessed 16 Jul 2022.

  40. Tayfur B, Charuphongsa C, Morrissey D, Miller SC. Neuromuscular function of the knee joint following knee injuries: does it ever get back to normal? A systematic review with meta-analyses. Sports Med. 2021;51:321–38. Available from: http://link.springer.com/10.1007/s40279-020-01386-6. Accessed 16 Jul 2022.

  41. Kuenze C, Pietrosimone B, Lisee C, Rutherford M, Birchmeier T, Lepley A, et al. Demographic and surgical factors affect quadriceps strength after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc. 2019;27:921–30. Available from: http://link.springer.com/10.1007/s00167-018-5215-9. Accessed 16 Jul 2022.

  42. Schmitt LC, Quatman CE, Paterno MV, Best TM, Flanigan DC. Functional outcomes after surgical management of articular cartilage lesions in the knee: a systematic literature review to guide postoperative rehabilitation. J Orthop Sports Phys Ther. 2014;44:565-A10. https://doi.org/10.2519/jospt.2014.4844.

    Article  PubMed  Google Scholar 

  43. Lepley LK. Deficits in quadriceps strength and patient-oriented outcomes at return to activity after ACL reconstruction: a review of the current literature. Sports Health. 2015;7:231–8. https://doi.org/10.1177/1941738115578112.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Welling W, Benjaminse A, Seil R, Lemmink K, Zaffagnini S, Gokeler A. Low rates of patients meeting return to sport criteria 9 months after anterior cruciate ligament reconstruction: a prospective longitudinal study. Knee Surg Sports Traumatol Arthrosc. 2018;26:3636–44. Available from: http://link.springer.com/10.1007/s00167-018-4916-4. Accessed 16 Jul 2022.

  45. Norte GE, Knaus KR, Kuenze C, Handsfield GG, Meyer CH, Blemker SS, et al. MRI-based assessment of lower-extremity muscle volumes in patients before and after ACL reconstruction. J Sport Rehabil. 2018;27:201–12. https://doi.org/10.1123/jsr.2016-0141

  46. Gapeyeva H, Pääsuke M, Ereline J, Pintsaar A, Eller A. Isokinetic torque deficit of the knee extensor muscles after arthroscopic partial meniscectomy. Knee Surg Sports Traumatol Arthrosc. 2000;8:301–4.

    Article  CAS  PubMed  Google Scholar 

  47. Sherman SL, DiPaolo ZJ, Ray TE, Sachs BM, Oladeji LO. Meniscus injuries. Clin Sports Med. 2020;39:165–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0278591919300651. Accessed 16 Jul 2022.

  48. Willinger L, Herbst E, Diermeier T, Forkel P, Woertler K, Imhoff AB, et al. High short-term return to sports rate despite an ongoing healing process after acute meniscus repair in young athletes. Knee Surg Sports Traumatol Arthrosc. 2019;27:215–22.

    Article  PubMed  Google Scholar 

  49. Yang BW, Liotta ES, Paschos N. Outcomes of meniscus repair in children and adolescents. Curr Rev Musculoskelet Med. 2019;12:233–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Casartelli NC, Item-Glatthorn JF, Friesenbichler B, Bizzini M, Salzmann GM, Maffiuletti NA. Quadriceps neuromuscular impairments after arthroscopic knee surgery: comparison between procedures. J Clin Med. 2019;8(11):1881. https://doi.org/10.3390/jcm8111881

  51. Hart JM, Kuenze CM, Diduch DR, Ingersoll CD. Quadriceps muscle function after rehabilitation with cryotherapy in patients with anterior cruciate ligament reconstruction. J Athl Train. 2014;49:733–9. Available from: https://meridian.allenpress.com/jat/article/49/6/733/112346/Quadriceps-Muscle-Function-After-Rehabilitation. Accessed 16 Jul 2022.

  52. Rice D, McNair PJ, Dalbeth N. Effects of cryotherapy on arthrogenic muscle inhibition using an experimental model of knee swelling. Arthritis & Rheumatism. 2008;61:78–83. https://doi.org/10.1002/art.24168.

    Article  Google Scholar 

  53. Kuenze CM, Kelly AR, Jun H-P, Eltoukhy M. Unilateral quadriceps strengthening with disinhibitory cryotherapy and quadriceps symmetry after anterior cruciate ligament reconstruction. J Athl Train. 2017;52:1010–8. Available from: https://meridian.allenpress.com/jat/article/52/11/1010/112933/Unilateral-Quadriceps-Strengthening-With. Accessed 16 Jul 2022.

  54. Hopkins J, Ingersoll CD, Edwards J, Klootwyk TE. Cryotherapy and transcutaneous electric neuromuscular stimulation decrease arthrogenic muscle inhibition of the vastus medialis after knee joint effusion. J Athl Train. 2002;37:25–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Perriman A, Leahy E, Semciw AI. The effect of open- versus closed-kinetic-chain exercises on anterior tibial laxity, strength, and function following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. J Orthop Sports Phys Ther. 2018;48:552–66. https://doi.org/10.2519/jospt.2018.7656.

    Article  PubMed  Google Scholar 

  56. Noehren B, Snyder-Mackler L. Who’s afraid of the big bad wolf? Open-chain exercises after anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther. 2020;50:473–5. https://doi.org/10.2519/jospt.2020.0609.

    Article  PubMed  Google Scholar 

  57. Fleming BC, Oksendahl H, Beynnon BD. Open- or closed-kinetic chain exercises after anterior cruciate ligament reconstruction? Exerc Sport Sci Rev. 2005;33:134–40.

    Article  PubMed  Google Scholar 

  58. Cognetti DJ, Sheean AJ, Owens JG. Blood flow restriction therapy and its use for rehabilitation and return to sport: physiology, application, and guidelines for implementation. Arthroscopy, Sports Medicine, and Rehabilitation. 2022;4:e71-6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666061X21002170. Accessed 15 Jul 2022.

  59. GraparZargi T, Drobnic M, Jkoder J, Strazar K, Kacin A. The effects of preconditioning with ischemic exercise on quadriceps femoris muscle atrophy following anterior cruciate ligament reconstruction: a quasi-randomized controlled trial. Eur J Phys Rehabil Med. 2016;52:310–20. Available from: https://pubmed.ncbi.nlm.nih.gov/26799572/. Accessed 17 Sept 2022.

  60. Žargi T, Drobnič M, Stražar K, Kacin A. Short–term preconditioning with blood flow restricted exercise preserves quadriceps muscle endurance in patients after anterior cruciate ligament reconstruction. Front Physiol [Internet]. 2018; 24;9:1150. Available from: https://www.frontiersin.org/article/10.3389/fphys.2018.01150/full. Accessed 17 Sept 2022.

  61. Tyler TF, Nicholas SJ, Hershman EB, Glace BW, Mullaney MJ, McHugh MP. The effect of creatine supplementation on strength recovery after anterior cruciate ligament (ACL) reconstruction: a randomized, placebo-controlled, double-blind trial. Am J Sports Med. 2004;32:383–8. https://doi.org/10.1177/0363546503261731.

    Article  PubMed  Google Scholar 

  62. Barker T, Leonard SW, Hansen J, Trawick RH, Ingram R, Burdett G, et al. Vitamin E and C supplementation does not ameliorate muscle dysfunction after anterior cruciate ligament surgery. Free Radic Biol Med. 2009;47:1611–8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S089158490900536X. Accessed 16 Jul 2022.

  63. Laboute E, France J, Trouve P, Puig P-L, Boireau M, Blanchard A. Rehabilitation and leucine supplementation as possible contributors to an athlete’s muscle strength in the reathletization phase following anterior cruciate ligament surgery. Ann Phys Rehabil Med. 2013;56:102–12. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1877065712013024. Accessed 17 Sept 2022.

  64. Howard EE, Margolis LM, Fussell MA, Rios CG, Meisterling EM, Lena CJ, et al. Effect of high-protein diets on integrated myofibrillar protein synthesis before anterior cruciate ligament reconstruction: a randomized controlled pilot study. Nutrients. 2022;14(3):563. Available from: https://www.mdpi.com/2072-6643/14/3/563. Accessed 17 Sept 2022.

  65. Mendias CL, Enselman ERS, Olszewski AM, Gumucio JP, Edon DL, Konnaris MA, et al. The use of recombinant human growth hormone to protect against muscle weakness in patients undergoing anterior cruciate ligament reconstruction: a pilot, randomized placebo-controlled trial. Am J Sports Med. 2020;48:1916–28. https://doi.org/10.1177/0363546520920591.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wu B, Lorezanza D, Badash I, Berger M, Lane C, Sum JC, et al. Perioperative testosterone supplementation increases lean mass in healthy men undergoing anterior cruciate ligament reconstruction: a randomized controlled trial. Orthop J Sports Med. 2017;5(8). https://doi.org/10.1177/2325967117722794

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the manuscript. Andrew Sheean conceptualized the article. Literature search, review, analysis, and manuscript organization were performed by Daniel Cognetti, Thomas Lynch, and Elizabeth Rich. Daniel Cognetti and Elizabeth Rich were responsible for manuscript drafting, with Asheesh Bedi, Aman Dhawan, and Andrew Sheean critically revising the work. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniel J. Cognetti.

Ethics declarations

Conflict of Interest

DJC: Reports being an editorial board member for Arthroscopy Journal, a board member for the AAOS Resident Assembly and being a co-investigator on a grant investigating blood flow restriction therapy following ACLR. TBL: Reports no disclosures. ER: Reports no disclosures. AB: Reports being a board or committee member for the American Orthopaedic Society for Sports Medicine, receives intellectual property royalties and is a paid consultant for Arthrex, Inc, receives publishing royalties from SLACK Incorporated and Springer. AD: Reports being a board or committee member for the American Orthopaedic Society for Sports Medicine, Arthroscopy Association of North America and Orthopaedic Journal of Sports Medicine, is a paid consultant for Avenue Therapeutics, Biomet, Smith & Nephew, is a paid speaker for Arthrex, Inc., Biomet and Smith and Nephew and receives other financial or material support from DJ Orthopaedics and Stryker. AJS: Reports being a board or committee member for the American Orthopaedic Society for Sports Medicine, Arthroscopy Association of North America, Society of Military Orthopaedic Surgeons and reports research support from Embody, Inc. and being a primary investigator on a grant investigating blood flow restriction therapy following ACLR.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cognetti, D.J., Lynch, T.B., Rich, E. et al. Quadriceps Dysfunction Following Joint Preservation Surgery: A Review of the Pathophysiologic Basis and Mitigation Strategies. Curr Rev Musculoskelet Med 16, 338–345 (2023). https://doi.org/10.1007/s12178-023-09844-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-023-09844-0

Keywords

Navigation