Skip to main content
Log in

High Sensitive Method for Determination of the Toxic Bisphenol A in Food/Beverage Packaging and Thermal Paper Using Glassy Carbon Electrode Modified with Carbon Black Nanoparticles

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A voltammetric method for fast and high sensitive determination of Bisphenol A (BPA) using glassy carbon electrode (GC) modified with carbon black nanoparticles (CB) was developed. Cyclic voltammetry study in the 0.1 M phosphates of pH = 7.0 gave single anodic peak at 578 mV. Adsorption-controlled oxidation of BPA was found to be irreversible with the participation of two electrons and two protons. The proposed CB/GC electrode significantly improved the oxidation peak current of BPA compared to the bare electrode. Under the optimum conditions, calibration curve was linear in the concentration of BPA from 0.01 to 3 × 10−6 mol L−1 with the detection limit of 3.4 × 10−9 mol L−1. Moreover, the proposed method was successfully validated by studying the recovery of BPA in commonly available samples: thermal paper (receipt, ticket) and food/beverages packaging. This paper introduces carbon black as a new, perspective material for electrode modification used in voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bard AJ, Faulkner LR (2001) Electrochemical methods. In: Fundamental and applications, Second edn. John Wiley & Sons, New York

    Google Scholar 

  • Becerr V, Odermatt J (2012) Detection and quantification of traces of bisphenol A and bisphenol S in paper samples using analytical pyrolysis-GC/MS. Analyst 137:2250–2259

    Article  Google Scholar 

  • Chen Z, Tang C, Zeng Y, Liu H, Yin Z, Li L (2014) Determination of bisphenol A using an electrochemical sensor based on a molecularly imprinted polymer-modified multiwalled carbon nanotube paste electrode. Anal Lett 47:996–1014

    Article  CAS  Google Scholar 

  • Del Olmo M, Zafra A, Navas NA, V′llchez JL (1999) Trace determination of phenol, bisphenol A and bisphenol A diglycidyl ether in mixtures by excitation fluorescence following micro liquid–liquid extraction using partial least squares regression. Analyst 124:385–390

    Article  Google Scholar 

  • EFSA (2015) Explains the safety of bisphenol A. http://www.efsa.europa.eu/en/topics/factsheets/factsheetbpa150121 Accessed 01 Mar 2016

  • Frysz CA, Chung DDL (1997) Improving the electrochemical behavior of carbon black and carbon filaments by oxidation. Carbon 35:1111–1127

    Article  CAS  Google Scholar 

  • Geens T, Goeyens L, Kannan K, Neels H, Covaci A (2012) A levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Sci Total Environ 435:30–33

    Article  Google Scholar 

  • Gosser Jr DK (1993) Cyclic voltammetry. Simulation and analysis of reaction mechanisms. VCH Publishers, Inc

  • Goulart LA, Cruz de Moraes F, Mascaro LH (2016) Influence of the different carbon nanotubes on the development of electrochemical sensors for bisphenol A. Mater Sci Eng C 58:768–773

    Article  CAS  Google Scholar 

  • Hormann AM, Vom Saal FS, Nagel SC, Stahlhut RW, Moyer CL, Ellersieck MR, Welshons MV, Toutain PL, Taylor JA (2014) Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA). PLoS One 9:1–12. doi:10.1371/journal.pone.0110509

    Google Scholar 

  • Huang W (2005) Voltammetric determination of bisphenol A using a carbon paste electrode based on the enhancement effect of cetyltrimethylammonium bromide (CTAB). Bull Kor Chem Soc 26:1560–1564

    Article  CAS  Google Scholar 

  • Inoue K, Kato K, Yoshimura Y, Makino T, Nakazawa H (2000) Determination of bisphenol A in human serum by high-performance liquid chromatography with multi-electrode electrochemical detection. J Chromatogr B Biomed Sci Appl 749:17–23

    Article  CAS  Google Scholar 

  • Jing P, Zhang X, Wu Z, Bao L, Xu Y, Liang C, Cao W (2015) Electrochemical sensing of bisphenol A by graphene-1-butyl-3-methylimidazolium hexafluorophosphate modified electrode. Talanta 141:41–46

    Article  CAS  Google Scholar 

  • Jordakova I, Dobias J, Voldrich M, Poustka J (2003) Determination of bisphenol A, bisphenol F, bisphenol A diglycidyl ether and bisphenol F diglycidyl ether migrated from food cans using gas chromatography-mass spectrometry. Czech J Food Sci 21:85–90

    CAS  Google Scholar 

  • Jow JJ, Hsieh LY, Cho HP, Chen HR, Kuo CW (2013) Determination of surface area of carbon-black by simple cyclic-voltammetry measurements in aqueous H2SO4. Ind Eng Chem 19:1730–1734

    Article  CAS  Google Scholar 

  • Laviron E (1974) Adsorption autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355

    Article  CAS  Google Scholar 

  • Li J, Kuang D, Feng Y, Zhang F, Liu M (2011) Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes. Microchim Acta 172:379–386

    Article  CAS  Google Scholar 

  • Li Y, Zhai X, Liu X, Wang L, Liu H, Wang H (2016) Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362–369

    Article  CAS  Google Scholar 

  • Markham DA, Waechter JM Jr, Wimber M, Rao N, Connolly P, Cren JC, Hentges S, Shiotsuka RN, Dimond S, Chappelle AH (2010) Development of a method for the determination of bisphenol A at trace concentrations in human blood and urine and elucidation of factors influencing method accuracy and sensitivity. J Anal Toxicol 34:293–303

    Article  CAS  Google Scholar 

  • Mendum T, Stoler E, Van Benschoten H, Warner JC (2011) Concentration of bisphenol A in thermal paper. Green Chem Lett Rev 2011:481–486

    Google Scholar 

  • Miller JN, Miller JC (2010) Statistics and chemometrics for analytical chemistry, Sixth edn. Prentice Hall, New York

    Google Scholar 

  • Mirzajani H, Cheng C, Wu J, Chen J, Eda S, Aghdam EN, Ghavifekr HB (2017) A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods. Biosens Bioelectron 89:1059–1067

    Article  CAS  Google Scholar 

  • Moraes FC, Silva TA, Cesarino I, Machado SAS (2013) Effect of the surface organization with carbon nanotubes on the electrochemical detection of bisphenol A. Sensor Actuat B-Chem 177:14–18

    Article  CAS  Google Scholar 

  • Najafi M, Khalilzadeh MA, Karimi-Maleh H (2014) A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem 158:125–131

    Article  CAS  Google Scholar 

  • Nikahd B, Khalilzadeh MA (2016) Liquid phase determination of bisphenol A in food samples using novel nanostructure ionic liquid modified sensor. J Mol Liq 215:253–257

    Article  CAS  Google Scholar 

  • Niu X, Yang W, Wang G, Ren J, Guo H, Gao J (2013) A novel electrochemical sensor of bisphenol A based on stacked graphene nanofibers/gold nanoparticles composite modified glassy carbon electrode. Electrochim Acta 98:167–175

    Article  CAS  Google Scholar 

  • Ntsendwana B, Mamba B, Sampath S, Arotiba OA (2012) Electrochemical detection of bisphenol A using graphene-modified glassy carbon electrode. Int J Electrochem Sci 7:3501–3512

    CAS  Google Scholar 

  • Paczosa-Bator B (2012) All-solid-state selective electrodes using carbon black. Talanta 93:424–427

    Article  CAS  Google Scholar 

  • Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155

    Article  CAS  Google Scholar 

  • Rykowska I, Wasiak W (2006) Properties, threats, and analysis methods of bisphenol A and its derivatives. Acta Chtomatogr 16:7–27

    CAS  Google Scholar 

  • Santana ER, De Lima CA, Piovesan JV, Spinelli A (2017) An original ferroferric oxide and gold nanoparticles-modified glassycarbon electrode for the determination of bisphenol A. Semsor Actuat B-Chem 240:487–496

    Article  CAS  Google Scholar 

  • Su B, Shao H, Li N, Chen X, Cai Z, Chen X (2017) A sensitive bisphenol A voltammetric sensor relying on AuPd nanoparticles/graphene composites modified glassy carbon electrode. Talanta 166:126–132

    Article  CAS  Google Scholar 

  • Sun Y, Wada M, Kuroda N, Hirayama K, Nakazawa H, Nakashima K (2001) Simultaneous determination of phenolic xenoestrogens by solid-phase extraction and high-performance liquid chromatography with fluorescence detection. Anal Sci 17:697–702

    Article  CAS  Google Scholar 

  • Szymański A, Rykowska I, Wasiak W (2006) Determination of bisphenol A in water and milk by micellar liquid chromatography. Acta Chromatogr 17:161–172

    Google Scholar 

  • Takahashi Y, Shirai A, Segawa T, Takahashi T, Sakakibara K (2002) Why does a color developing phenomenon occur on thermal paper comprising of a fluoran dye and a color developer molecule. Bull Chem Soc Jpn 75:2225–2231. doi:10.1246/bcsj.75.2225

    Article  CAS  Google Scholar 

  • Tu X, Yan L, Luo X, Luo S, Xieb O (2009) Electroanalysis of bisphenol A at a multiwalled carbon nanotubes-gold nanoparticles modified glassy carbon electrode. Electroanalysis 21:2491–2494

    CAS  Google Scholar 

  • Vandenberg NL, Maffini MV, Sonnenschein C, Rubin BS, Soto AM (2009) Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 30:75–95

    Article  CAS  Google Scholar 

  • Wang J (2000) Analytical electrochemistry, Second edn. John Wiley & Sons, New York

    Book  Google Scholar 

  • Wang A, Wei Y, Wang C (2015) Study on the Electrocatalytic oxidation of bisphenol A on Au nanoparticles/carbon nanotubes composite modified electrode. J Anal Chem 70:67–71

    Article  CAS  Google Scholar 

  • Wang Q, Zhu L, Chen M, Ma X, Wang X, Xia J (2017) Simultaneously determination of bisphenol A and its alternatives in sediment by ultrasound-assisted and solid phase extractions followed by derivatization using GC-MS. Chemosphere 169:709–715

    Article  CAS  Google Scholar 

  • Watabe Y, Kondo T, Morita M, Tanaka N, Hosoya K, Haginaka J (2004) Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. J Chromatogr A 1032:45–49

    Article  CAS  Google Scholar 

  • Watabe Y, Kondo T, Morita M, Tanaka N, Hosoya K, Kubo T (2005) LC/MS determination of bisphenol A in river water using a surface-modified molecularly-imprinted polymer as an on-line pretreatment device. Anal Bioanal Chem 381:1193–1198

    Article  CAS  Google Scholar 

  • Wu X, Li Y, Zhu X, He C, Wang Q, Liu S (2017) Dummy molecularly imprinted magnetic nanoparticles for dispersive solidphase extraction and determination of bisphenol A in water samples and orange juice. Talanta 162:57–64

    Article  CAS  Google Scholar 

  • Zhou Q, Wang G, Xie G (2014) Preconcentration and determination of bisphenol A, naphthol and dinitrophenol from environmental water samples by dispersive liquid-phase microextraction and HPLC. Anal Methods 6:187–193

    Article  CAS  Google Scholar 

  • Wang Q, Wang Y, Liu S, Wang L, Gao F, Sun W (2012) Voltammetric detection of bisphenol a by a chitosan–graphene composite modified carbon ionic liquid electrode. Thin Solid Films 520:4459–4464

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Piech.

Ethics declarations

Funding

This work was supported by the Polish National Science Centre (Project No. 2015/19/B/ST5/01380).

Conflict of Interest

Martyna Ławrywianiec declares that she has no conflict of interest. Robert Piech declares that he has no conflict of interest. Joanna Smajdor declares that she has no conflict of interest. BeataPaczosa-Bator declares that she has no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ławrywianiec, M., Smajdor, J., Paczosa-Bator, B. et al. High Sensitive Method for Determination of the Toxic Bisphenol A in Food/Beverage Packaging and Thermal Paper Using Glassy Carbon Electrode Modified with Carbon Black Nanoparticles. Food Anal. Methods 10, 3825–3835 (2017). https://doi.org/10.1007/s12161-017-0945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-017-0945-8

Keywords

Navigation