Skip to main content
Log in

Carences en folates (vitamine B9): vers une politique de santé publique en Afrique

Folate metabolism (vitamin B9): towards a public health policy in africa

  • Published:
Journal Africain d'Hépato-Gastroentérologie

Résumé

Cette revue fait la synthèse des récentes connaissances sur les carences en folates et leur impact sur la santé humaine. La carence en folates (vitamine B9) est une préoccupation majeure en termes de santé publique dans le monde. L’accès limité aux ressources alimentaires et la pauvreté accentuent particulièrement cette préoccupation dans les pays du sud. Les folates sont impliqués dans la synthèse des acides nucléiques (ADN, ARN), dans les processus de méthylation et dans le contrôle du taux de synthèse de l’homocystéine. De ce fait, leur carence est associée à l’apparition d’anomalies fœtales invalidantes et létales, aux risques de cancer, de troubles vasculaires et neurologiques. Outre la malnutrition, des facteurs environnementaux (contaminants alimentaires, alcool), des maladies infectieuses telles que la malaria et des déterminants génétiques du métabolisme des folates sont des facteurs prédictifs qui doivent être au cœur des préoccupations en matière de politique de santé publique en Afrique.

Abstract

Folate deficiency is a major concern in terms of public health across the world. Limited access to food resources and poverty accentuate this problem in southern countries. Folate is involved in the synthesis of nucleic acids (ADN, ARN), methylation processes and control of the rate of homocysteine synthesis. Consequently, folate deficiency is associated with crippling and lethal foetal abnormalities, risk of cancer and vascular and neurological disorders. In addition to dietary folate deficiency, environmental factors (food contaminants, alcohol), infectious diseases (malaria) and genetic determinants of folate metabolism are predictive factors that need to be taken into account in public health policies in Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Références

  1. Chakravarty I, Sinha RK (2002) Prevalence of micronutrient deficiency based on results obtained from the national pilot program on control of micronutrient malnutrition. Nutr Rev 60: S53–S58

    Article  PubMed  Google Scholar 

  2. Demment MW, Young MM, Sensenig RL (2003) Providing micronutrients through food-based solutions: a key to human and national development. J Nutr 133: 3879S–3885S

    PubMed  CAS  Google Scholar 

  3. Siekmann JH, Allen LH, Bwibo NO, et al. (2003) Kenyan school children have multiple micronutrient deficiencies, but increased plasma vitamin B12 is the only detectable micronutrient response to meat or milk supplementation. J Nutr 133: 3972S–3980S

    PubMed  CAS  Google Scholar 

  4. Krishnaswamy K, Madhavan Nair K (2001) Importance of folate in human nutrition. Br J Nutr 85(Suppl 2): S115–S124

    Article  PubMed  CAS  Google Scholar 

  5. McNulty H (1995) Folate requirements for health in different population groups. Br J Biomed Sci 52: 110–119

    PubMed  CAS  Google Scholar 

  6. Bailey LB, Gregory JF, 3rd (1999) Folate metabolism and requirements. J Nutr 129: 779–782

    PubMed  CAS  Google Scholar 

  7. Ramakrishnan U (2002) Prevalence of micronutrient malnutrition worldwide. Nutr Rev 60: S46–S52

    Article  PubMed  Google Scholar 

  8. Yang LK, Wong KC, Wu MY, et al. (2007). Correlations between folate, B12, homocysteine levels, and radiological markers of neuropathology in elderly post-stroke patients. J Am Coll Nutr 26: 272–278

    PubMed  CAS  Google Scholar 

  9. Villa P, Suriano R, Costantini B, et al. (2007) Hyperhomocysteinemia and cardiovascular risk in postmenopausal women: the role of folate supplementation. Clin Chem Lab Med 45: 130–135

    Article  PubMed  CAS  Google Scholar 

  10. Vianna AC, Mocelin AJ, Matsuo T, et al. (2007) Uremic hyperhomocysteinemia: a randomized trial of folate treatment for the prevention of cardiovascular events. Hemodial Int 11: 210–216

    Article  PubMed  Google Scholar 

  11. Ozkan Y, Yardim-Akaydin S, Firat H, et al. (2007) Usefulness of homocysteine as a cancer marker: total thiol compounds and folate levels in untreated lung cancer patients. Anticancer Res 27: 1185–1189

    PubMed  CAS  Google Scholar 

  12. Luchsinger JA, Tang MX, Miller J, et al. (2007) Relation of higher folate intake to lower risk of Alzheimer’s disease in the elderly. Arch Neurol 64: 86–92

    Article  PubMed  Google Scholar 

  13. de Lau LM, Refsum H, Smith AD, et al. (2007) Plasma folate concentration and cognitive performance: Rotterdam Scan Study. Am J Clin Nutr 86: 728–734

    PubMed  Google Scholar 

  14. Bailey LB (1990) Folate status assessment. J Nutr 120(Suppl 11): 1508–1511

    PubMed  CAS  Google Scholar 

  15. Gregory JF, 3rd, Bhandari SD, Bailey LB, et al. (1992) Relative bioavailability of deuterium-labeled monoglutamyl tetrahydrofolates and folic acid in human subjects. Am J Clin Nutr 55: 1147–1153

    PubMed  CAS  Google Scholar 

  16. Hawkes JG, Villota R (1989) Folates in foods: reactivity, stability during processing, and nutritional implications. Crit Rev Food Sci Nutr 28: 439–538

    PubMed  CAS  Google Scholar 

  17. Stover PJ, Garza C (2002) Bringing individuality to public health recommendations. J Nutr 132: 2476S–2480S

    PubMed  CAS  Google Scholar 

  18. Potier De Courcy G, Frelut ML, Fricker J, et al. (2003) Besoins nutritionnels et apports conseillés pour la satisfaction de ces besoins. Endocrinologie-nutrition 10-308-A-10: 1–32

  19. Bailey LB (1992) Evaluation of a new recommended dietary allowance for folate. J Am Diet Assoc 92: 463–468, 471

    PubMed  CAS  Google Scholar 

  20. McNulty H, Pentieva K (2004) Folate bioavailability. Proc Nutr Soc 63: 529–536

    Article  PubMed  CAS  Google Scholar 

  21. Corona G, Giannini F, Fabris M, et al. (1998) Role of folate receptor and reduced folate carrier in the transport of 5-methyltetrahydrofolic acid in human ovarian carcinoma cells. Int J Cancer 75: 125–133

    Article  PubMed  CAS  Google Scholar 

  22. Chango A, Emery-Fillon N, de Courcy GP, et al. (2000) A polymorphism (80G->A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 70: 310–315

    Article  PubMed  CAS  Google Scholar 

  23. Duthie SJ, Narayanan S, Brand GM, et al. (2002) Impact of folate deficiency on DNA stability. J Nutr 132: 2444S–2449S

    PubMed  CAS  Google Scholar 

  24. Fenech M (2001) The role of folic acid and Vitamin B12 in genomic stability of human cells. Mutat Res 475: 57–67

    PubMed  CAS  Google Scholar 

  25. Chango A, Abdel Nour MA, Niquet C, Tessier JF (2008) Simultaneous determination of genomic DNA methylation and uracil misincorporation. Med Princ Pract (in press)

  26. Navarro J, Goutet JM, Roy C, et al. (1980) Folic acid deficiency and depression of cellular immunity. Arch Fr Pediatr 37: 279

    PubMed  CAS  Google Scholar 

  27. Nelen WL, Blom HJ, Steegers EA, et al. (2000) Hyperhomocysteinemia and recurrent early pregnancy loss: a meta-analysis. Fertil Steril 74: 1196–1199

    Article  PubMed  CAS  Google Scholar 

  28. Nelen WL, Bulten J, Steegers EA, et al. (2000) Maternal homocysteine and chorionic vascularization in recurrent early pregnancy loss. Hum Reprod 15: 954–960

    Article  PubMed  CAS  Google Scholar 

  29. Antony AC (2007) In utero physiology: role of folic acid in nutrient delivery and fetal development. Am J Clin Nutr 85: 598S–603S

    PubMed  CAS  Google Scholar 

  30. Badovinac RL, Werler MM, Williams PL, et al. (2007) Folic acid-containing supplement consumption during pregnancy and risk for oral clefts: a meta-analysis. Birth Defects Res A Clin Mol Teratol 79: 8–15

    Article  PubMed  CAS  Google Scholar 

  31. Shaw GM, Zhu H, Lammer EJ, et al. (2003) Genetic variation of infant reduced folate carrier (A80G) and risk of orofacial and conotruncal heart defects. Am J Epidemiol 158: 747–752

    Article  PubMed  Google Scholar 

  32. Ncayiyana DJ (1986) Neural tube defects among rural blacks in a Transkei district. A preliminary report and analysis. S Afr Med J (Suid-Afrikaanse tydskrif vir geneeskunde) 69: 618–620

    CAS  Google Scholar 

  33. Brady MA, Hooper PJ, Ottesen EA (2006) Projected benefits from integrating NTD programs in Sub-saharan Africa. Trends in parasitology 22: 285–291

    Article  PubMed  Google Scholar 

  34. Bottiglieri T, Hyland K (1994) S-adenosylmethionine levels in psychiatric and neurological disorders: a review. Acta Neurol Scand Suppl 154: 19–26

    Article  PubMed  CAS  Google Scholar 

  35. Reynolds EH, Preece JM, Bailey J, Coppen A (1970) Folate deficiency in depressive illness. Br J Psychiatry 117: 287–292

    PubMed  CAS  Google Scholar 

  36. Moretti P, Sahoo T, Hyland K, et al. (2005) Cerebral folate deficiency with developmental delay, autism, and response to folinic acid. Neurology 64: 1088–1090

    PubMed  CAS  Google Scholar 

  37. Almeida OP, Flicker L, Lautenschlager NT, et al. (2005) Contribution of the MTHFR gene to the causal pathway for depression, anxiety and cognitive impairment in later life. Neurobiol Aging 26: 251–257

    Article  PubMed  CAS  Google Scholar 

  38. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22: 4632–4642

    Article  PubMed  CAS  Google Scholar 

  39. Pogribny IP, Tryndyak VP, Muskhelishvili L, et al. (2007) Methyl deficiency, alterations in global histone modifications, and carcinogenesis. J Nutr 137: 216S–222S

    PubMed  CAS  Google Scholar 

  40. Pogribny IP, Muskhelishvili L, Miller BJ, James SJ (1997) Presence and consequence of uracil in preneoplastic DNA from folate/methyl-deficient rats. Carcinogenesis 18: 2071–2076

    Article  PubMed  CAS  Google Scholar 

  41. Kim YI (2005) Nutritional epigenetics: impact of folate deficiency on DNA methylation and colon cancer susceptibility. J Nutr 135: 2703–2709

    PubMed  CAS  Google Scholar 

  42. Shrubsole MJ, Gao YT, Cai Q, et al. (2004) MTHFR polymorphisms, dietary folate intake, and breast cancer risk: results from the Shanghai Breast Cancer Study. Cancer Epidemiol Biomarkers Prev 13: 190–196

    Article  PubMed  CAS  Google Scholar 

  43. Pufulete M, Emery PW, Sanders TA (2003) Folate, DNA methylation and colorectal cancer. Proc Nutr Soc 62: 437–445

    Article  PubMed  CAS  Google Scholar 

  44. Chango A, Amouzou EK, Ringot D, Redah D, Napo-Koura G, et al. (2006) Cancer, alimentation et variations épigénétiques associées aux folates et aux contaminants en Afrique. In: D LAaK (ed) Le cancer en Afrique, vol. Institut national du cancer, Boulogne-Billancourt, pp. 559–568

  45. Rampersaud GC, Kauwell GP, Hutson AD, et al. (2000) Genomic DNA methylation decreases in response to moderate folate depletion in elderly women. Am J Clin Nutr 72: 998–1003

    PubMed  CAS  Google Scholar 

  46. Gueant-Rodriguez RM, Gueant JL, Debard R, et al. (2006) Prevalence of methylenetetrahydrofolate reductase 677T and 1298C alleles and folate status: a comparative study in Mexican, West African, and European populations. Am J Clin Nutr 83: 701–707

    PubMed  CAS  Google Scholar 

  47. Amouzou EK, Chabi NW, Adjalla CE, et al. (2004) High prevalence of hyperhomocysteinemia related to folate deficiency and the 677C->T mutation of the gene encoding methylenetetrahydrofolate reductase in coastal West Africa. Am J Clin Nutr 79: 619–624

    PubMed  CAS  Google Scholar 

  48. Adjalla CE, Amouzou EK, Sanni A, et al. (2003) Low frequency of mutated methylenetetrahydrofolate reductase 677C->T and 1298A->C genetics single nucleotide polymorphisms (SNPs) in Sub-Saharan populations. Clin Chem Lab Med 41: 1028–1032

    Article  PubMed  CAS  Google Scholar 

  49. Weisberg IS, Jacques PF, Selhub J, et al. (2001) The 1298A->C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 156: 409–415

    Article  PubMed  CAS  Google Scholar 

  50. Gueant JL, Chabi NW, Gueant-Rodriguez RM, et al. (2007) Environmental influence on the worldwide prevalence of a 776C->G variant in the transcobalamin gene (TCN2). J Med Genet 44: 363–367

    Article  PubMed  CAS  Google Scholar 

  51. Abdel Nour AM, Ringot D, Gueant JL, Chango A (2007) Folate receptor and human reduced folate carrier expression in HepG2 cell line exposed to fumonisin B1 and folate deficiency. Carcinogenesis

  52. Sun G, Wang S, Hu X, et al. (2007) Fumonisin B1 contamination of home-grown corn in high-risk areas for esophageal and liver cancer in China. Food Addit Contam 24: 181–185

    Article  PubMed  CAS  Google Scholar 

  53. Ciacci-Zanella JR, Jones C (1999) Fumonisin B1, a mycotoxin contaminant of cereal grains, and inducer of apoptosis via the tumour necrosis factor pathway and caspase activation. Food Chem Toxicol 37: 703–712

    Article  PubMed  CAS  Google Scholar 

  54. Dawlatana M, Coker RD, Nagler MJ, et al. (2002) The occurrence of mycotoxins in key commodities in Bangladesh: surveillance results from 1993 to 1995. J Nat Toxins 11: 379–386

    PubMed  CAS  Google Scholar 

  55. Stiller CA (2007) International patterns of cancer incidence in adolescents. Cancer Treat Rev 33: 631–645

    Article  PubMed  Google Scholar 

  56. Marasas WF, Riley RT, Hendricks KA, et al. (2004) Fumonisins disrupt sphingolipid metabolism, folate transport, and neural tube development in embryo culture and in vivo: a potential risk factor for human neural tube defects among populations consuming fumonisin-contaminated maize. J Nutr 134: 711–716

    PubMed  CAS  Google Scholar 

  57. Merrill AH, Jr., Schmelz EM, Dillehay DL, et al. (1997) Sphingolipids-the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142: 208–225

    Article  PubMed  CAS  Google Scholar 

  58. Mandal BK, Ogra Y, Suzuki KT (2001) Identification of dimethylarsinous and monomethylarsonous acids in human urine of the arsenic-affected areas in West Bengal, India. Chem Res Toxicol 14: 371–378

    Article  PubMed  CAS  Google Scholar 

  59. Gamble MV, Liu X, Ahsan H, et al. (2005) Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh. Environ Health Perspect 113: 1683–1688

    Article  PubMed  CAS  Google Scholar 

  60. Abernathy CO, Thomas DJ, Calderon RL (2003) Health effects and risk assessment of arsenic. J Nutr 133: 1536S–1538S

    PubMed  CAS  Google Scholar 

  61. Gradecka D, Palus J, Wasowicz W (2001) Selected mechanisms of genotoxic effects of inorganic arsenic compounds. Int J Occup Med Environ Health 14: 317–328

    PubMed  CAS  Google Scholar 

  62. Poirier LA (2002) The effects of diet, genetics and chemicals on toxicity and aberrant DNA methylation: an introduction. J Nutr 132: 2336S–2339S

    PubMed  CAS  Google Scholar 

  63. Meyskens FL, Jr., Szabo E (2005) Diet and cancer: the disconnect between epidemiology and randomized clinical trials. Cancer Epidemiol Biomarkers Prev 14: 1366–1369

    Article  PubMed  CAS  Google Scholar 

  64. Narayanan S, McConnell J, Little J, et al. (2004) Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (strand breaks, misincorporated uracil, and DNA methylation status) in human lymphocytes in vivo. Cancer Epidemiol Biomarkers Prev 13: 1436–1443

    PubMed  CAS  Google Scholar 

  65. McDonald SD, Perkins SL, Jodouin CA, Walker MC (2002) Folate levels in pregnant women who smoke: an important gene/environment interaction. Am J Obstet Gynecol 187: 620–625

    Article  PubMed  CAS  Google Scholar 

  66. Mannino DM, Mulinare J, Ford ES, Schwartz J (2003) Tobacco smoke exposure and decreased serum and red blood cell folate levels: data from the Third National Health and Nutrition Examination Survey. Nicotine Tob Res 5: 357–362

    Article  PubMed  CAS  Google Scholar 

  67. Hung RJ, Hashibe M, McKay J, et al. (2007) Folate-related genes and the risk of tobacco-related cancers in Central Europe. Carcinogenesis 28: 1334–1340

    Article  PubMed  CAS  Google Scholar 

  68. Poschl G, Stickel F, Wang XD, Seitz HK (2004) Alcohol and cancer: genetic and nutritional aspects. Proc Nutr Soc 63: 65–71

    Article  PubMed  CAS  Google Scholar 

  69. Halsted CH, Villanueva JA, Devlin AM (2002) Folate deficiency, methionine metabolism, and alcoholic liver disease. Alcohol 27: 169–172

    Article  PubMed  CAS  Google Scholar 

  70. Gero AM, O’sullivan WJ (1990) Purines and pyrimidines in malarial parasites. Blood Cells 16: 467–484 (discussion 85–98)

    PubMed  CAS  Google Scholar 

  71. Hyde JE (2005) Exploring the folate pathway in Plasmodium falciparum. Acta Trop 94: 191–206

    PubMed  CAS  Google Scholar 

  72. Krungkrai J, Webster HK, Yuthavong Y (1989) De novo and salvage biosynthesis of pteroylpentaglutamates in the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 32: 25–37

    Article  PubMed  CAS  Google Scholar 

  73. Wang P, Nirmalan N, Wang Q, et al. (2004) Genetic and metabolic analysis of folate salvage in the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 135: 77–87

    Article  PubMed  CAS  Google Scholar 

  74. Goodman MT, McDuffie K, Hernandez B, et al. (2001) Association of methylenetetrahydrofolate reductase polymorphism C677T and dietary folate with the risk of cervical dysplasia. Cancer Epidemiol Biomarkers Prev 10: 1275–1280

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chango.

About this article

Cite this article

Chango, A. Carences en folates (vitamine B9): vers une politique de santé publique en Afrique. J Afr Hepato Gastroenterol 2, 5–12 (2008). https://doi.org/10.1007/s12157-008-0037-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12157-008-0037-x

Mots clés

Keywords

Navigation