Skip to main content
Log in

Innovative Strategy in the Production of Polysaccharides from Spirulina and Chlorella Grown in Seawater and Brackish Groundwater

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

There are no reports of production and characterization of polysaccharides in the genera Chlorella and Spirulina cultivated in seawater (SW) and brackish groundwater (BGW). Furthermore, there are few studies on the cultivation of these microalgae in seawater for this purpose. Therefore, the aim of the study was to evaluate the production and composition of polysaccharides in Spirulina sp. LEB 18 and Chlorella fusca LEB 111 grown in seawater and brackish groundwater, with and without nutrient supplementation. In this study, 100% SW and 100% BGW were used as nutrient sources and supplemented with different concentrations of nitrogen, phosphorus, iron, and EDTA sources that make up the Zarrouk/BG-11 culture media. Cultivating Chlorella fusca LEB 111 in SW, without the addition of nutrients, resulted in an approximately 23% increase in starch production (g/g). The cultivation of Spirulina sp. LEB 18 in SW and BGW, without the addition of nutrients, showed an increase in glycogen concentrations (50.5 and 40.75 g/100 gbiomass, respectively) and highest levels of exopolysaccharides (0.34 and 0.50 g/100 gbiomass, respectively) compared to the control. Moreover, exopolysaccharides compositional analysis has shown an increase in glucose content with salinity, and a decrease in xylose and glucuronic acid. This cultivation strategy demonstrates the viability of utilizing SW and BGW as alternatives to freshwater culture medium for microalgae that have high nutritional requirements, with the potential to produce exopolysaccharides.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dvořák P, Casamatta DA, Hašler P, Jahodářová E, Norwich AR, Poulíčková A (2017) Diversity of the cyanobacteria. In: Hallenbeck PC (ed) Modern topics in the phototrophic prokaryotes. Springer, pp 3–46

    Chapter  Google Scholar 

  2. Caetano PA, Nascimento TC, Fernandes AS, Nass PP, Vieira KR, Junior MRM, Jacob-Lopes E, Zepka LQ (2022) Microalgae-based polysaccharides: Insights on production, applications, analysis, and future challenges. Biocatal Agric Biotechnol 45:102491. https://doi.org/10.1016/j.bcab.2022.102491

    Article  CAS  Google Scholar 

  3. Bhattacharya M, Goswami S (2020) Microalgae–A green multi-product biorefinery for future industrial prospects. Biocatal Agric Biotechnol 25:101580. https://doi.org/10.1007/s12155-023-10566-x

    Article  CAS  Google Scholar 

  4. Tang W, Liu D, Yin JY, Nie SP (2020) Consecutive and progressive purification of food-derived natural polysaccharide: Based on material, extraction process and crude polysaccharide. Trends Food Sci Technol 99:76–87. https://doi.org/10.1016/j.tifs.2020.02.015

    Article  CAS  Google Scholar 

  5. Costa JAV, Lucas BF, Alvarenga AGP, Moreira JB, Morais MG (2021) Microalgae polysaccharides: An overview of production, characterization, and potential applications. Polysaccharides 2:759–772. https://doi.org/10.3390/polysaccharides2040046

    Article  CAS  Google Scholar 

  6. Laroche C (2022) Exopolysaccharides from microalgae and cyanobacteria: diversity of strains, production strategies, and applications. Mar drugs 20:336. https://doi.org/10.3390/md20050336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chanda M, Merghoub N, El Arroussi H (2019) Microalgae polysaccharides: The new sustainable bioactive products for the development of plant bio-stimulants? World J Microbiol Biotechnol 35:1–10. https://doi.org/10.1007/s11274-019-2745-3

    Article  CAS  Google Scholar 

  8. Gaignard C, Laroche C, Pierre G, Dubessay P, Delattre C, Gardarin C, Gourvil P, Probert I, Dubuffet A, Michaud P (2019) Screening of microalgae: investigation of new exopolysaccharide producers. Algal Res 44:101711. https://doi.org/10.1016/j.algal.2019.101711

    Article  Google Scholar 

  9. Velmurugan R, Incharoensakdi A (2021) Overexpression of glucose-6-phosphate isomerase in Synechocystis sp. PCC 6803 with disrupted glycogen synthesis pathway improves exopolysaccharides synthesis. Algal Res 57:102357. https://doi.org/10.1016/j.algal.2021.102357

    Article  Google Scholar 

  10. Bezerra PQM, Moraes L, Cardoso LG, Druzian JI, Morais MG, Nunes IL, Costa JAV (2020) Spirulina sp. LEB 18 cultivation in seawater and reduced nutrients: Bioprocess strategy for increasing carbohydrates in biomass. Bioresour Technol 316:123883. https://doi.org/10.1016/j.biortech.2020.123883

    Article  CAS  PubMed  Google Scholar 

  11. Duarte JH, Cardoso LG, Souza CO, Nunes IL, Druzian JI, Morais MG, Costa JAV (2020) Brackish groundwater from brazilian backlands in Spirulina cultures: potential of carbohydrate and polyunsaturated fatty acid production. Appl Biochem Biotechnol 190:907–917. https://doi.org/10.1007/s12010-019-03126-7

    Article  CAS  PubMed  Google Scholar 

  12. Bezerra PQM, Moraes L, Silva TNM, Cardoso LG, Druzian JI, Morais MG, Nunes IL, Costa JAV (2023) Strategy for carbohydrate-starch production enhancement by Chlorella fusca using seawater as culture medium. Bioenerg Res 16:2502–2511. https://doi.org/10.1007/s12155-023-10566-x

    Article  CAS  Google Scholar 

  13. Lécuyer C (2016) Seawater residence times of some elements of geochemical interest and the salinity of the oceans. Bull la Société Géologique Fr 187:245–260. https://doi.org/10.2113/gssgfbull.187.6.245

    Article  Google Scholar 

  14. Morais MG, Reichert CC, Dalcanton F, Durante AJ, Marins LF, Costa JAV (2008) Isolation and characterization of a new Arthrospira strain. Zeitschrift fur Naturforsch. - Sect C J Biosci 63:144–150. https://doi.org/10.1515/znc-2008-1-226

    Article  Google Scholar 

  15. Duarte JH, Fanka LS, Costa JAV (2016) Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation. Bioresour Technol 214:159–165. https://doi.org/10.1016/j.biortech.2016.04.078

    Article  CAS  PubMed  Google Scholar 

  16. Costa JAV, Colla LM, Filho PFD (2004) Improving Spirulina platensis biomass yield using a fed-batch process. Bioresour Technol 92:237–241. https://doi.org/10.1016/j.biortech.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  17. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J Gen Microbiol 111:1–61. https://doi.org/10.1099/00221287-111-1-1

    Article  Google Scholar 

  18. Bezerra PQM, Moraes L, Silva TNM, Cardoso LG, Druzian JI, Morais MG, Costa JAV (2022) Innovative application of brackish groundwater without the addition of nutrients in the cultivation of Spirulina and Chlorella for carbohydrate and lipid production. Bioresour Technol 345:126543. https://doi.org/10.1016/j.biortech.2021.126543

    Article  CAS  PubMed  Google Scholar 

  19. Rosa GM, Moraes L, Souza MDRAZ, Costa JAV (2016) Spirulina cultivation with a CO2 absorbent: Influence on growth parameters and macromolecule production. Bioresour Technol 200:528–534. https://doi.org/10.1016/j.biortech.2015.10.025

    Article  CAS  PubMed  Google Scholar 

  20. Rosa GM, Moraes L, Cardias BB, Souza MRAZ, Costa JAV (2015) Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresour Technol 192:321–327. https://doi.org/10.1016/j.biortech.2015.05.020

    Article  CAS  PubMed  Google Scholar 

  21. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  22. Esqueda AB, Gardarin C, Laroche C (2022) Exploring the diversity of red microalgae for exopolysaccharide production. Mar Drugs 20:246. https://doi.org/10.3390/md20040246

    Article  CAS  Google Scholar 

  23. Filali-Mouhim R, Cornet JF, Fontane T, Fournet B, Dubertret G (1993) Production, isolation and preliminary characterization of the exopolysaccharide of the cyanobacterium Spirulina platensis. Biotechnol Lett 15:567–572. https://doi.org/10.1007/BF00138541

    Article  CAS  Google Scholar 

  24. Phelippe M, Goncalves O, Thouand G, Cogne G, Laroche C (2019) Characterization of the polysaccharides chemical diversity of the cyanobacteria Arthrospira platensis. Algal Res 38:101426. https://doi.org/10.1016/j.algal.2019.101426

    Article  Google Scholar 

  25. Gaignard C, Macao V, Gardarin C, Rihouey C, Picton L, Michaud P, Laroche C (2018) The red microalga Flintiella sanguinaria as a new exopolysaccharide producer. J Appl Phycol 30:2803–2814. https://doi.org/10.1007/s10811-018-1389-2

    Article  CAS  Google Scholar 

  26. Monsigny M, Petit C, Roche AC (1988) Colorimetric determination of neutral sugars by a resorcinol sulfuric acid micromethod. Anal Biochem 175:525–530. https://doi.org/10.1016/0003-2697(88)90578-7

    Article  CAS  PubMed  Google Scholar 

  27. Montreuil J, Spick G, Chosson A, Segard E, Scheppler N (1963) Methods of study of the structure of glycoproteins. J Pharm Belg 18:529–546

    CAS  PubMed  Google Scholar 

  28. Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489. https://doi.org/10.1016/0003-2697(73)90377-1

    Article  CAS  PubMed  Google Scholar 

  29. Mathimani T, Bhumathi D, Ahamed TS, Dineshbabu G, Deviram G, Uma L, Prabaharan D (2017) Semicontinuous outdoor cultivation and efficient harvesting of marine Chlorella vulgaris BDUG 91771 with minimum solid co-precipitation and high floc recovery for biodiesel. Energy Convers Manag 149:13–25. https://doi.org/10.1016/j.enconman.2017.06.077

    Article  CAS  Google Scholar 

  30. Ferreira A, Ferreira SS, Correia A, Vilanova M, Silva TH, Coimbra MA, Nunes C (2020) Reserve, structural and extracellular polysaccharides of Chlorella vulgaris: A holistic approach. Algal Res 45:101757. https://doi.org/10.1016/j.algal.2019.101757

    Article  Google Scholar 

  31. Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179. https://doi.org/10.1016/j.biotechadv.2016.08.001

    Article  CAS  PubMed  Google Scholar 

  32. Deamici KM, Morais MG, Santos LO, Muylaert K, Gardarin C, Costa JAV, Laroche C (2021) Static magnetic fields effects on polysaccharides production by different microalgae strains. Appl Sci 11:5299. https://doi.org/10.3390/app11115299

    Article  CAS  Google Scholar 

  33. Lee MC, Chen YC, Peng TC (2012) Two-stage culture method for optimized polysaccharide production in Spirulina platensis. J Sci Food Agric 92:1562–1569. https://doi.org/10.1002/jsfa.4743

    Article  CAS  PubMed  Google Scholar 

  34. Chentir I, Hamdi M, Doumandji A, HadjSadok A, Ouada HB, Nasri M, Jridi M (2017) Enhancement of extracellular polymeric substances (EPS) production in Spirulina (Arthrospira sp.) by two-step cultivation process and partial characterization of their polysaccharidic moiety. Int J Biol Macromol 105:1412–1420. https://doi.org/10.1016/j.ijbiomac.2017.07.009

    Article  CAS  PubMed  Google Scholar 

  35. Li Z, Liu Y, Zhou T, Cao L, Cai Y, Wang Y, Zhang Q (2022) Effects of culture conditions on the performance of Arthrospira platensis and its production of exopolysaccharides. Foods 11:2020. https://doi.org/10.3390/foods11142020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150:417–420. https://doi.org/10.1007/BF00422279

    Article  Google Scholar 

  37. Trabelsi L, Ben Ouada H, Zili F, Mazhoud N, Ammar J (2013) Evaluation of Arthrospira platensis extracellular polymeric substances production in photoautotrophic, heterotrophic and mixotrophic conditions. Folia Microbiol 58:39–45. https://doi.org/10.1007/s12223-012-0170-1

    Article  CAS  Google Scholar 

  38. Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotech 102:143–152. https://doi.org/10.1016/s0168-1656(03)00022-1

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. Also, this research was funded by the Program CAPES-COFECUB (Sv 945/19) and Ministry of Science, Technology, Innovations and Communication (MCTIC).

Author information

Authors and Affiliations

Authors

Contributions

P.Q.M. Bezerra: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing – original draft. S. G. Kuntzler: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing – original draft. M.G. Morais: Writing – review & editing. I.L. Nunes: Writing – review & editing, Supervision. J.A.V. Costa: Conceptualization, Resources, Writing – review & editing, Supervision, Project administration, Funding acquisition. C. Laroche: Conceptualization, Resources, Writing – review & editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to C. Laroche.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezerra, P.Q.M., Kuntzler, S.G., Morais, M.G. et al. Innovative Strategy in the Production of Polysaccharides from Spirulina and Chlorella Grown in Seawater and Brackish Groundwater. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10737-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10737-4

Keywords

Navigation