Skip to main content
Log in

The Inorganic Composition of Tachigali vulgaris Wood: Implications for Bioenergy and Nutrient Balances of Planted Forests in the Amazonia

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Scientific information on the ash quality of Tachigalis vulgaris wood may reveal nutrient export mechanisms in energy forests and also insights into the wood quality for thermochemical conversions. This study aimed to evaluate the nutrient export and technological implications of ashes in the combustion of T. vulgaris grown in different planting spacings (4.5 m2;6.0 m2; 7.5 m2; 9 m2; 10.5 m2; 12.0 m2). The levels of inorganic elements were determined for 7-year-old trees cultivated in experimental plantations across the eastern Amazonia region. The element contents were used to obtain the export of nutrients and to calculate the fouling index (FI), basic to acidic compound ratio (B/A), sintering index (SI), slag viscosity index (SR), bed agglomeration index (BAI), and alkali index (AI). The most exported nutrients were Ca (18.7 kg/ha), P (13.9 kg/ha), and K (6.6 kg/ha). The FI, B/A, SI, and SR indices suggested deposition problems in the boilers for all planting spacings. However, BAI and AI indicated a low propensity to form fouling and slag. The spacing significantly influenced the P export. Planting spacing of 12 m2 demands increased P fertilization to maintain plantation productivity. The low ratio between alkaline earth and alkaline elements and high P2O5 values in the ash of T. vulgaris are disadvantageous. However, the high Al2O3 level and low ash content may contribute to the increase in the melting temperature of the ash. The study revealed that Tachigali vulgaris is a suitable species for wood production in energy forests.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Datasets that support the conclusions are included in the manuscript. In addition, the datasets analyzed in this research are available from the corresponding author upon request.

References

  1. Crow SE, Reeves M, Turn S, Taniguchi S, Schubert OS, Koch N (2016) Carbon balance implications of land use change from pasture to managed eucalyptus forest in Hawaii. Carbon Manag 7:171–181. https://doi.org/10.1080/17583004.2016.1213140

    Article  CAS  Google Scholar 

  2. Pena-Vergara G, Castro LR, Gasparetto CA, Bizzo WA (2022) Energy from planted forest and its residues characterization in Brazil. Energy 239:122243. https://doi.org/10.1016/j.energy.2021.122243

    Article  Google Scholar 

  3. Koutika L-S, Richardson DM (2019) Acacia mangium Willd: benefits and threats associated with its increasing use around the world. For Ecosyst 6:2. https://doi.org/10.1186/s40663-019-0159-1

    Article  Google Scholar 

  4. Silva MOS, Silva MG, Bufalino L, Assis MR, Gonçalves DA, Trugilho PF, Protásio TP (2021) Variations in productivity and wood properties of Amazonian tachi-branco trees planted at different spacings for bioenergy purposes. J For Res (Harbin) 32:211–224. https://doi.org/10.1007/s11676-019-01068-8

    Article  CAS  Google Scholar 

  5. Pirovani DB, Pezzopane JEM, Xavier AC, Pezzopane JRM, Jesus Júnior WC, Machuca MAH, Santos GMADA, Silva SF, Almeida SLH, Peluzio TMO, Eugenio FC, Moreira TR, Alexandre RS, Santos AR (2018) Climate change impacts on the aptitude area of forest species. Ecol Indic 95:405–416. https://doi.org/10.1016/j.ecolind.2018.08.002

    Article  Google Scholar 

  6. Farias J, Marimon BS, Silva LCR, Petter FA, Andrade FR, Morandi PS, Marimon-Junior BH (2016) Survival and growth of native Tachigali vulgaris and exotic Eucalyptus urophylla × Eucalyptus grandis trees in degraded soils with biochar amendment in southern Amazonia. For Ecol Manage 368:173–182. https://doi.org/10.1016/j.foreco.2016.03.022

    Article  Google Scholar 

  7. Lima MDR, Patrício EPS, Barros Junior UO, Assis MR, Xavier CN, Bufalino L, Trugilho PF, Hein PRG, Protásio TP (2020) Logging wastes from sustainable forest management as alternative fuels for thermochemical conversion systems in Brazilian Amazon. Biomass Bioenergy 140:105660. https://doi.org/10.1016/j.biombioe.2020.105660

    Article  CAS  Google Scholar 

  8. van der Werff H (2008) A Synopsis of the genus Tachigali (Leguminosae: Caesalpinioideae) in Northern South America. Ann Mo Bot Gard 95:618–661. https://doi.org/10.3417/2007159

    Article  Google Scholar 

  9. Barros-Junior UO, Rosário WAS, Lima MDR, Silva MOS, Patrício EPS, Gonçalves DA, Bufalino L, Protásio TP (2022) Effects of tree spacing and forking on the modification of wood density in a trial plantation of Tachigali vulgaris for energy in Amazonia. J Trop For Sci 34:11–23. https://doi.org/10.2307/48645220

    Article  Google Scholar 

  10. Magdziarz A, Dalai AK, Koziński JA (2016) Chemical composition, character and reactivity of renewable fuel ashes. Fuel 176:135–145. https://doi.org/10.1016/j.fuel.2016.02.069

    Article  CAS  Google Scholar 

  11. Vassilev SV, Vassileva CG, Song Y-C, Li W-Y, Feng J (2017) Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel 208:377–409. https://doi.org/10.1016/j.fuel.2017.07.036

    Article  CAS  Google Scholar 

  12. Luan C, You C, Zhang D (2014) Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace. Energy 69:562–570. https://doi.org/10.1016/j.energy.2014.03.050

    Article  CAS  Google Scholar 

  13. Song WJ, Tang LH, Zhu XD, Wu YQ, Zhu ZB, Koyama S (2010) Effect of coal ash composition on ash fusion temperatures . Energy Fuels 24:182–189. https://doi.org/10.1021/ef900537m

    Article  CAS  Google Scholar 

  14. Rodríguez JL, Álvarez X, Valero E, Ortiz L, Torre-Rodríguez N, Acuña-Alonso C (2021) Influence of ashes in the use of forest biomass as source of energy. Fuel 283:119256. https://doi.org/10.1016/j.fuel.2020.119256

    Article  CAS  Google Scholar 

  15. Vassilev SV, Vassileva CG, Baxter D (2014) Trace element concentrations and associations in some biomass ashes. Fuel 129:292–313. https://doi.org/10.1016/j.fuel.2014.04.001

    Article  CAS  Google Scholar 

  16. Lugli LF, Andersen KM, Aragão LEOC, Cordeiro AL, Cunha HFV, Fuchslueger L, Meir P, Mercado LM, Oblitas E, Quesada CA, Rosa JS, Schaap KJ, Valverde-Barrantes O, Hartley IP (2020) Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central Amazonia. Plant Soil 450:49–63. https://doi.org/10.1007/s11104-019-03963-9

    Article  CAS  Google Scholar 

  17. Krainovic PM, Almeida DRA, Desconci D, Veiga-Júnior VF, Sampaio PT (2017) Sequential management of commercial rosewood (Aniba rosaeodora Ducke) plantations in Central Amazonia: seeking sustainable models for essential oil production. Forests 8:438. https://doi.org/10.3390/f8120438

    Article  Google Scholar 

  18. González-García M, Hevia A, Majada J, Rubiera F, Barrio-Anta M (2016) Nutritional, carbon and energy evaluation of Eucalyptus nitens short rotation bioenergy plantations in northwestern Spain. IForest 9:303–310. https://doi.org/10.3832/ifor1505-008

    Article  Google Scholar 

  19. Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Casnati CR, Bentancor L (2020) Evaluation of the nutrient content in biomass of Eucalyptus species from short rotation plantations in Uruguay. Biomass Bioenergy 134:105502. https://doi.org/10.1016/j.biombioe.2020.105502

    Article  CAS  Google Scholar 

  20. Lima MDR, Moraes LG, Silva RCC, Barros Junior UO, Bufalino L, Soares AAV, Assis-Pereira G, de Gonçalves DA, Tomazello-Filho M, Protásio TP (2023) Tachigali vulgaris energy forests: understanding spacing, age, and stem type effects on tree growth patterns and wood density. New For (Dordr) 54:491–513. https://doi.org/10.1007/s11056-022-09932-y

    Article  Google Scholar 

  21. Moraes LG, Lima MDR, Assis-Pereira G, de Almeida GD, Vidaurre GB, Bufalino L, Guedes FTP, Tomazello-Filho M, de Paula PT (2023) Forking and planting spacing impacts on wood density, X-ray density, and heartwood proportion of Tachigali vulgaris. Trees. https://doi.org/10.1007/s00468-023-02443-z

    Article  Google Scholar 

  22. Bernardi ACC, Silva CA, Vidal Pérez D, Meneguelli NDA (2002) Analytical quality program of soil fertility laboratories that adopt Embrapa methods in Brazil. Commun Soil Sci Plant Anal 33:2661–2672. https://doi.org/10.1081/CSS-120014471

    Article  CAS  Google Scholar 

  23. Pronobis M (2005) Evaluation of the influence of biomass co-combustion on boiler furnace slagging by means of fusibility correlations. Biomass Bioenergy 28:375–383. https://doi.org/10.1016/j.biombioe.2004.11.003

    Article  CAS  Google Scholar 

  24. Dayton DC, Jenkins BM, Turn SQ, Bakker RR, Williams RB, Belle-Oudry D, Hill LM (1999) Release of inorganic constituents from leached biomass during thermal conversion. Energy Fuels 13:860–870. https://doi.org/10.1021/ef980256e

    Article  CAS  Google Scholar 

  25. Fernández Llorente MJ, Carrasco García JE (2005) Comparing methods for predicting the sintering of biomass ash in combustion. Fuel 84:1893–1900. https://doi.org/10.1016/j.fuel.2005.04.010

    Article  CAS  Google Scholar 

  26. Yu LY, Wang LW, Li PS (2014) Study on prediction models of biomass ash softening temperature based on ash composition. J Energy Inst 87:215–219. https://doi.org/10.1016/j.joei.2014.03.011

    Article  CAS  Google Scholar 

  27. Bentancor L, Hernández J, Pino A, Califra Á, Resquín F, González-Barrios P (2019) Evaluation of the biomass production, energy yield and nutrient removal of Eucalyptus dunnii Maiden grown in short rotation coppice under two initial planting densities and harvest systems. Biomass Bioenergy 122:165–174. https://doi.org/10.1016/j.biombioe.2019.01.019

    Article  Google Scholar 

  28. Gehrmann H-J, Mätzing H, Nowak P, Baris D, Seifert H, Dupont C, Defoort F, Peyrot M, Castagno F (2020) Waste wood characterization and combustion behaviour in pilot lab scale. J Energy Inst 93:1634–1641. https://doi.org/10.1016/j.joei.2020.02.001

    Article  CAS  Google Scholar 

  29. ISO 2021 ISO 17225–2 - Solid biofuels—fuel specifications and classes—part 2: graded wood pellets. https://www.iso.org/standard/76088.html. Accessed 03 March 2022

  30. García-Maraver A, Popov V, Zamorano M (2011) A review of European standards for pellet quality. Renew Energy 36:3537–3540. https://doi.org/10.1016/j.renene.2011.05.013

    Article  CAS  Google Scholar 

  31. Medeiros PL, Silva GGC, Oliveira EMM, Ribeiro CO, Silva JMS, Pimenta AS (2020) Efficiency of nutrient use for biomass production of a Eucalyptus clone as a function of planting density in short-rotation cropping. Aust For 83:66–74. https://doi.org/10.1080/00049158.2020.1774958

    Article  Google Scholar 

  32. Rezakhani L, Motesharezadeh B, Tehrani MM, Etesami H, Hosseini HM (2022) The effect of silicon fertilization and phosphate-solubilizing bacteria on chemical forms of silicon and phosphorus uptake by wheat plant in a calcareous soil. Plant Soil 477:259–280. https://doi.org/10.1007/s11104-021-05274-4

    Article  CAS  Google Scholar 

  33. Wu H, Xiang W, Chen L, Ouyang S, Xiao W, Li S, Forrester DI, Lei P, Zeng Y, Deng X, Zeng L, Kuzyakov Y (2020) Soil phosphorus bioavailability and recycling increased with stand age in Chinese fir plantations. Ecosystems 23:973–988. https://doi.org/10.1007/s10021-019-00450-1

    Article  Google Scholar 

  34. Kumar JA, Sathish S, Prabu D, Renita AA, Saravanan A, Deivayanai VC, Anish M, Jayaprabakar J, Baigenzhenov O, Hosseini-Bandegharaei A (2023) Agricultural waste biomass for sustainable bioenergy production: feedstock, characterization and pre-treatment methodologies. Chemosphere 331:138680. https://doi.org/10.1016/j.chemosphere.2023.138680

    Article  CAS  PubMed  Google Scholar 

  35. Aquino STM, Santos RF, Batista KD (2019) Nutritional deficiency symptoms of young ‘cedro doce’ plants grown under macronutrient omission. Rev Bras de Eng Agricola e Ambient 23:264–270. https://doi.org/10.1590/1807-1929/agriambi.v23n4p264-270

    Article  Google Scholar 

  36. Consalter R, Motta ACV, Barbosa JZ, Vezzani FM, Rubilar RA, Prior SA, Nisgoski S, Bassaco MVM (2021) Fertilization of Pinus taeda L. on an acidic oxisol in southern Brazil: growth, litter accumulation, and root exploration. Eur J For Res 140:1095–1112. https://doi.org/10.1007/s10342-021-01390-z

    Article  CAS  Google Scholar 

  37. Boström D, Skoglund N, Grimm A, Boman C, Öhman M, Broström M, Backman R (2012) Ash transformation chemistry during combustion of biomass. Energy Fuels 26:85–93. https://doi.org/10.1021/ef201205b

    Article  CAS  Google Scholar 

  38. Li W, Huang Y, Xie J, Lang L, Bu W, Jiang Y, Wang Y, Yin X (2021) Assessment of Flammulina velutipes residue as potential fuels for co-combustion with pine sawdust from characteristics of combustion process, flue gases and ashes. J Anal Appl Pyrolysis 158:105156. https://doi.org/10.1016/j.jaap.2021.105156

    Article  CAS  Google Scholar 

  39. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash. Fuel 105:19–39. https://doi.org/10.1016/j.fuel.2012.10.001

    Article  CAS  Google Scholar 

  40. Wang G, Poulsen JNF, Poulsen SNF, Jensen PA, Frandsen FJ (2022) Influence of kaolin and coal fly ash addition on biomass ash deposition in an entrained flow reactor. Fuel 313:123041. https://doi.org/10.1016/j.fuel.2021.123041

    Article  CAS  Google Scholar 

  41. Albuquerque ARL, Angélica RS, Merino A, Paz SPA (2021) Chemical and mineralogical characterization and potential use of ash from Amazonian biomasses as an agricultural fertilizer and for soil amendment. J Clean Prod 295:126472. https://doi.org/10.1016/j.jclepro.2021.126472

    Article  CAS  Google Scholar 

  42. Cummer KR, Brown RC (2002) Ancillary equipment for biomass gasification. Biomass Bioenergy 23:113–128. https://doi.org/10.1016/S0961-9534(02)00038-7

    Article  CAS  Google Scholar 

  43. Li QH, Zhang YG, Meng AH, Li L, Li GX (2013) Study on ash fusion temperature using original and simulated biomass ashes. Fuel Process Technol 107:107–112. https://doi.org/10.1016/j.fuproc.2012.08.012

    Article  CAS  Google Scholar 

  44. Negrão DR, Grandis A, Buckeridge MS, Rocha GJM, Leal MRLV, Driemeier C (2021) Inorganics in sugarcane bagasse and straw and their impacts for bioenergy and biorefining: a review. Renew Sust Energ Rev 148:111268. https://doi.org/10.1016/j.rser.2021.111268

    Article  CAS  Google Scholar 

  45. Kirubakaran V, Sivaramakrishnan V, Nalini R, Sekar T, Premalatha M, Subramanian P (2009) A review on gasification of biomass. Renew Sust Energ Rev 13:179–186. https://doi.org/10.1016/j.rser.2007.07.001

    Article  CAS  Google Scholar 

  46. Ab Rasid NS, Shamjuddin A, Abdul Rahman AZ, Amin NAS (2021) Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. J Clean Prod 321:129038. https://doi.org/10.1016/j.jclepro.2021.129038

    Article  CAS  Google Scholar 

  47. Thomas BS, Yang J, Mo KH, Abdalla JA, Hawileh RA, Ariyachandra E (2021) Biomass ashes from agricultural wastes as supplementary cementitious materials or aggregate replacement in cement/geopolymer concrete: a comprehensive review. J Build Eng 40:102332. https://doi.org/10.1016/j.jobe.2021.102332

    Article  Google Scholar 

  48. Abdul AAM, Ibrahim ML, Matmin J, Kassim MF, Mastuli MS, Taufiq-Yap YH, Shohaimi NAM, Islam A, Tan YH, Kaus NHM (2020) SiO2-rich sugar cane bagasse ash catalyst for transesterification of palm oil. Bioenergy Res 13:986–997. https://doi.org/10.1007/s12155-020-10119-6

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the Laboratory for Technology of Forest Products of the Federal Rural University of Amazonia (UFRA, Brazil), the Multiuser Laboratory of Biomaterials and Biomass Energy of the Federal University of Lavras (UFLA, Brazil), the Jari Cellulose Group, the Embrapa Eastern Amazon and Dr. Patrícia de Oliveira Nunes (Applied Analytical Spectrometry Group /Federal University of Pará) for supporting the analysis of the inorganic chemistry of the wood of T. vulgaris, and to the researchers Marilene Olga dos Santos Silva and Isael Costa for supporting in collecting the wood samples.

Funding

This work was supported by the National Council for Scientific and Technological Development (CNPq—process no. 306793/2019–9) and Coordination for the Improvement of Higher Education Personnel (CAPES—finance code 001 and Edital Procad Amazônia 2018—process no. 88881.199859/2018–01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvis Vieira dos Santos.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Tachigali vulgaris wood contained high levels and a wide variation of aluminum.

• The high wood dry mass of T. vulgaris in Amazonian soils confirms its adaptation.

T. vulgaris planted at 12 m2 spacing requires P fertilization for better productivity.

• The most exported nutrients by T. vulgaris wood were Ca, P, and K.

T. vulgaris wood has a low propensity to form sintering.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1219 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos, E.V., Lima, M.D.R., Dantas, K.d. et al. The Inorganic Composition of Tachigali vulgaris Wood: Implications for Bioenergy and Nutrient Balances of Planted Forests in the Amazonia. Bioenerg. Res. 17, 114–128 (2024). https://doi.org/10.1007/s12155-023-10679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10679-3

Keywords

Navigation