Skip to main content

Advertisement

Log in

Use of Hydrothermal Pretreatment to Enhance Biogas Production from Pelagic Sargassum

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Excessive amounts of pelagic Sargassum arriving at Mexican coastlines result in the deterioration of soil and water quality and the endangerment of endemic aquatic species, so far proper management strategies for this biomass are not being developed. Anaerobic digestion is a well-established technology for energy recovery of organic residues. However, the conversion of Sargassum is unsatisfactory as it was confirmed in this study with only 21% of theoretical methane yield. To make this conversion strategy more favourable, pretreatment is recommended. The present work compares the effectiveness of steam explosion and extrusion to increase digestibility of Sargassum. Both methods were found to improve the bioconversion of the macroalgae by nearly 80%. The solubilization of organic matter with a yield of 145 ± 3.8 mg of chemical oxygen demand (COD) per g of dry biomass (TS) obtained by steam explosion was significantly higher than that of extrusion giving rise to 64.2 ± 7.1 mg COD g−1 TS. In contrast, the methane yield evaluated in batch assays for both treatments was significantly the same with 114 ± 4 mLN CH4 per gram of volatile solids (VS) for the conversion of steam-exploded substrate and 108 ± 6 mLN CH4 g−1 VS when extrusion as pretreatment method was applied. In summary, extrusion may be the preferred technology to tackle this kind of biomass as removal of salt is intrinsically tied to dewatering stream.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Lapointe BE, West LE, Sutton TT, Hu C (2014) Ryther revisited: nutrient excretions by fishes enhance productivity of pelagic Sargassum in the western North Atlantic Ocean. J Exp Mar Biol Ecol 458:46–56. https://doi.org/10.1016/j.jembe.2014.05.002

    Article  CAS  Google Scholar 

  2. Rodríguez-Martínez RE, Medina-Valmaseda AE, Blanchon P, Monroy-Velázquez LV, Almazán-Becerril A, Delgado-Pech B, Vásquez-Yeomans L, Francisco V, García-Rivas MC (2019) Faunal mortality associated with massive beaching and decomposition of pelagic Sargassum. Mar Pollut Bull 146:201–205. https://doi.org/10.1016/j.marpolbul.2019.06.015

    Article  CAS  PubMed  Google Scholar 

  3. Salter MA, Rodríguez-Martínez RE, Álvarez-Filip L, Jordán-Dahlgren E, Perry CT (2020) Pelagic Sargassum as an emerging vector of high rate carbonate sediment import to tropical Atlantic coastlines. Glob Planet Change 195:103332. https://doi.org/10.1016/j.gloplacha.2020.103332

    Article  Google Scholar 

  4. Charlier RH, Morand P, Finkl CW (2008) How Brittany and Florida coasts cope with green tides. Int J Environ Stud 65:191–208. https://doi.org/10.1080/00207230701791448

    Article  Google Scholar 

  5. Oxenford HA, Cox SA, van Tussenbroek BI, Desrochers A (2021) Challenges of turning the sargassum crisis into Gold: current constraints and implications for the Caribbean. Phycology 1(1):27–48. https://doi.org/10.3390/phycology1010003

    Article  Google Scholar 

  6. Bach LT, Tamsitt V, Gower J, Hurd CL, Raven JA, Boyd PW (2021) Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat Commun 12:2556. https://doi.org/10.1038/s41467-021-22837-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maneein S, Milledge JJ, Nielsen BV, Harvey PJ (2018) A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation 4(4):100. https://doi.org/10.3390/fermentation4040100

    Article  CAS  Google Scholar 

  8. Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:202–214. https://doi.org/10.1016/j.algal.2014.02.001

    Article  Google Scholar 

  9. Fan X, Guo R, Yuan X, Qiu Y, Yang Z, Wang F, Sun M, Zhao X (2015) Biogas production from Macrocystis pyrifera biomass in seawater system. Bioresour Technol 197:39–347. https://doi.org/10.1016/j.biortech.2015.08.128

    Article  CAS  Google Scholar 

  10. Koivikko R, Loponen J, Honkanen T, Jormalainen V (2005) Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J Chem Ecol 31:195–212. https://doi.org/10.1007/s10886-005-0984-2

    Article  CAS  PubMed  Google Scholar 

  11. Austin C, Stewart D, Allwood JW, McDougall GJ (2018) Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: contributions of phenolic and polysaccharide components. Food Funct 9:502–510. https://doi.org/10.1039/C7FO01690E

    Article  CAS  PubMed  Google Scholar 

  12. Shannon E, Abu-Ghannam N (2016) Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar Drugs 14(4):81. https://doi.org/10.3390/md14040081

    Article  CAS  PubMed Central  Google Scholar 

  13. Thompson TM, Young BR, Baroutian S (2020) Pelagic Sargassum for energy and fertiliser production in the Caribbean: a case study on Barbados. Renew Sust Energy Rev 118:109564. https://doi.org/10.1016/j.rser.2019.109564

    Article  CAS  Google Scholar 

  14. McMillan JD (1994) Pretreatment of lignocellulosic biomass. Enzymatic conversion of biomass for fuels production. ACS Symp Ser 566:292–324. https://doi.org/10.1021/bk-1994-0566.ch015

    Article  CAS  Google Scholar 

  15. Biswas R, Uellendahl H, Ahring BK (2015) Wet explosion: a universal and efficient pretreatment process for lignocellulosic biorefineries. Bioenergy Res 8:1101–1116. https://doi.org/10.1007/s12155-015-9590-5

    Article  CAS  Google Scholar 

  16. Ruiz HA, Conrad M, Shao-Ni S, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Run-Cang S, Meyer AS (2020) Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  PubMed  Google Scholar 

  17. Garrote G, Dominguez H, Parajo JC (1999) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  CAS  Google Scholar 

  18. Ramos LP (2003) The chemistry involved in the steam treatment of lignocellulosic materials. Quim Nova 26(6):863–871. https://doi.org/10.1590/S0100-40422003000600015

    Article  CAS  Google Scholar 

  19. Negro MJ, Manzanares P, Dominguez JMO, Ballesteros I (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenergy 25(3):301–308. https://doi.org/10.1016/S0961-9534(03)00017-5

    Article  CAS  Google Scholar 

  20. Schultz-Jensen N, Thygesen A, Leipold F, Thomsen ST, Roslander C, Lilholt H, Bjerre AB (2013) Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol - Comparison of five pretreatment technologies. Bioresour Technol 140:36–42. https://doi.org/10.1016/j.biortech.2013.04.060

    Article  CAS  PubMed  Google Scholar 

  21. Thompson TM, Young BR, Baroutian S (2020) Efficiency of hydrothermal pretreatment on the anaerobic digestion of pelagic Sargassum for biogas and fertiliser recovery. Fuel 279:118527. https://doi.org/10.1016/j.fuel.2020.118527

    Article  CAS  Google Scholar 

  22. del Río PG, Domínguez E, Domínguez VD, Romaní A, Domingues L, Garrote G (2019) Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew Energy 141:728–735. https://doi.org/10.1016/j.renene.2019.03.083

    Article  CAS  Google Scholar 

  23. Milledge JJ, Nielsen BV, Sadek MS, Harvey PJ (2018) Effect of freshwater washing pretreatment on Sargassum muticum as a feedstock for biogas production. Energies 11(7):1771. https://doi.org/10.3390/en11071771

    Article  CAS  Google Scholar 

  24. Shahid SA, Zaman M, Heng L (2018) Soil salinity: historical perspectives and a world overview of the problem. In: Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, Springer, Cham, pp 43–53. https://doi.org/10.1007/978-3-319-96190-3_2

  25. Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, de Sousa L (2019) Global mapping of soil salinity change. Remote Sens Environ 231:111260. https://doi.org/10.1016/j.rse.2019.111260

    Article  Google Scholar 

  26. Bui EN (2013) Soil salinity: a neglected factor in plant ecology and biogeography. J Arid Environ 92:14–25. https://doi.org/10.1016/j.jaridenv.2012.12.014

    Article  Google Scholar 

  27. Ranjana P, Kazama S, Sawamoto M, Sana A (2009) Global scale evaluation of coastal fresh groundwater resources. Ocean Coast Manag 52(3–4):197–206. https://doi.org/10.1016/j.ocecoaman.2008.09.006

    Article  Google Scholar 

  28. Ingle K, Vitkin E, Robin A, Yakhini Z, Mishori D, Golberg A (2018) Macroalgae biorefinery from Kappaphycus alvarezii: conversion modeling and performance prediction for India and Philippines as examples. Bioenergy Res 11:22–32. https://doi.org/10.1007/s12155-017-9874-z

    Article  CAS  Google Scholar 

  29. Du Bois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  Google Scholar 

  30. Weber B, Sandoval-Moctezuma AC, Estrada-Maya A, Martínez-Cienfuegos IG, Durán-García MD (2020) Agave bagasse response to steam explosion and anaerobic treatment. Biomass Convers Biorefinery 10:1279–1289. https://doi.org/10.1007/s13399-020-00619-y

    Article  CAS  Google Scholar 

  31. Valdez-Vazquez I, Alatriste-Mondragón F, Arreola-Vargas J, Buitrón G, Carrillo-Reyes J, León-Becerril E, Mendez-Acosta HO, Ortíz I, Weber B (2020) A comparison of biological, enzymatic, chemical and hydrothermal pretreatments for producing biomethane from agave bagasse. Ind Crops Prod 145:112160. https://doi.org/10.1016/j.indcrop.2020.112160

    Article  CAS  Google Scholar 

  32. Stökle K, Hülsemann B, Steinbach D, Cao Z, Oechsner H, Kruse A (2021) A biorefinery concept using forced chicory roots for the production of biogas, hydrochar, and platform chemicals. Biomass Convers Biorefinery 11:1453–1463. https://doi.org/10.1007/s13399-019-00527-w

    Article  CAS  Google Scholar 

  33. Buitrón G, Hernández-Juárez A, Hernández-Ramírez MD, Sánchez A (2019) Biochemical methane potential from lignocellulosic wastes hydrothermally pretreated. Ind Crops Prod 139:111555. https://doi.org/10.1016/j.indcrop.2019.111555

    Article  CAS  Google Scholar 

  34. Cauwet G (1999) Determination of dissolved organic carbon and nitrogen by high temperature combustion. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 4th edn. Wiley-VCH, Weinheim, pp 407–420. https://doi.org/10.1002/9783527613984.ch15

    Chapter  Google Scholar 

  35. Konda NVSNM, Singh S, Simmons BA, Klein-Marcuschamer D (2015) An investigation on the economic feasibility of macroalgae as a potential feedstock for biorefineries. Bioenergy Res 8:1046–1056. https://doi.org/10.1007/s12155-015-9594-1

    Article  Google Scholar 

  36. Chávez V, Uribe-Martínez A, Cuevas E, Rodríguez-Martínez RE, van Tussenbroek BI, Francisco V et al (2020) Massive influx of pelagic Sargassum spp. on the coasts of the Mexican Caribbean 2014–2020: challenges and opportunities. Water 12:1–24. https://doi.org/10.3390/w12102908

    Article  Google Scholar 

  37. Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S, Olesen B, Arias C, Jensen PD (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102(3):2595–2604. https://doi.org/10.1016/j.biortech.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  38. Ross AB, Jones JM, Kubacki ML, Bridgeman T (2008) Classification of macroalgae as fuel and its thermochemical behavior. Bioresour Technol 99(14):6494–6504. https://doi.org/10.1016/j.biortech.2007.11.036

    Article  CAS  PubMed  Google Scholar 

  39. Díaz-Vázquez LM, Rojas-Pérez A, Fuentes-Caraballo M, Robles IV, Jena KC, Das U (2015) Demineralization of Sargassum spp. macroalgae biomass: selective hydrothermal liquefaction process for bio-oil production. Front Energy Res 3:1–11. https://doi.org/10.3389/fenrg.2015.00006

    Article  Google Scholar 

  40. Rivard CJ, Vinzant TB, Adney WS, Grohmann K (1989) Waste to energy: nutrient requirements for aerobic and anaerobic digestion. J Environ Health Assoc 52(2):96–100. https://www.jstor.org/stable/44541275. Accessed 24 Oct 2021

  41. Wang Y, Fu F, Li J, Wang G, Wu M, Zhan J, Chen X, Mao Z (2016) Effects of seaweed fertilizer on the growth of Malus hupehensis Rehd. seedlings, soil enzyme activities and fungal communities under replant condition. Eur J Soil Biol 75:1–7. https://doi.org/10.1016/j.ejsobi.2016.04.003

    Article  CAS  Google Scholar 

  42. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99(10):4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  PubMed  Google Scholar 

  43. Milledge JJ, Maneein S, Arribas-López E, Bartlett D (2020) Sargassum inundations in Turks and Caicos: methane potential and proximate, ultimate, lipid, amino acid, metal and metalloid analyses. Energies 13(6):1523. https://doi.org/10.3390/en13061523

    Article  CAS  Google Scholar 

  44. Angell AR, Mata L, de Nys R, Paul NA (2016) The protein content of seaweeds: a universal nitrogen-to-protein conversion factor of five. J Appl Phycol 28:511–524. https://doi.org/10.1007/s10811-015-0650-1

    Article  CAS  Google Scholar 

  45. Alaba PA, Popoola SI, Abnisal F, Lee CS, Ohunakin OS, Adetiba E, Akanle MB, Patah MFA, Atayero AAA, Daud WMAW (2020) Thermal decomposition of rice husk: a comprehensive artificial intelligence predictive model. J Therm Anal Calorim 140:1811–1823. https://doi.org/10.1007/s10973-019-08915-0

    Article  CAS  Google Scholar 

  46. Lizasoain J, Rincón M, Theuretzbacher F, Enguídanos R, Nielsen PJ, Potthast A, Zweckmair T, Gronauer A, Bauer A (2016) Biogas production from reed biomass: effect of pretreatment using different steam explosion conditions. Bioresour Technol 95:84–91. https://doi.org/10.1016/j.biombioe.2016.09.021

    Article  CAS  Google Scholar 

  47. Weber B, Estrada-Maya A, Sandoval-Moctezuma AC, Martínez-Cienfuegos IG (2019) Anaerobic digestion of extracts from steam exploded Agave tequilana bagasse. J Environ Manag 245:489–495. https://doi.org/10.1016/j.jenvman.2019.05.093

    Article  CAS  Google Scholar 

  48. Mendez L, Mahdy A, Ballesteros M, González-Fernandez C (2015) Chlorella vulgaris vs cyanobacterial biomasses: comparison in terms of biomass productivity and biogas yield. Energy Convers Manag 92:137–142. https://doi.org/10.1016/j.enconman.2014.11.050

    Article  CAS  Google Scholar 

  49. Tapia-Tussell R, Avila-Arias J, Domínguez-Maldonado J, Valero D, Olguin-Maciel E, Pérez-Brito D, Alzate-Gaviria L (2018) Biological pretreatment of Mexican Caribbean macroalgae Consortiums using Bm-2 strain (Trametes hirsuta) and its enzymatic broth to improve biomethane potential. Energies 11(3):494. https://doi.org/10.3390/en11030494

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Cemie-Oceano for providing the fellowship of a bachelor’s student. We also thank Jorge Aburto Anell from the Mexican Petroleum Institute (IMP) for carrying out the extrusion experiments in their installations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Weber.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 196 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala-Mercado, I.D., Weber, B. & Durán-García, M.D. Use of Hydrothermal Pretreatment to Enhance Biogas Production from Pelagic Sargassum. Bioenerg. Res. 15, 1639–1648 (2022). https://doi.org/10.1007/s12155-021-10371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10371-4

Keywords

Navigation