Skip to main content

Advertisement

Log in

Potential of Chlorella sorokiniana Cultivated in Dairy Wastewater for Bioenergy and Biodiesel Production

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae can serve as a sustainable and economic feedstock in biofuel production. This study addressed the cultivation of freshwater microalgae Chlorella sorokiniana EAKI in untreated dairy wastewater (DWW) as a low-cost nutrient source for qualified biofuel production. To this end, biomass production, lipid accumulation, and fatty acids (FAs) profile, as well as biodiesel production of C. sorokiniana grown in undiluted and diluted DWW, were examined. According to the findings, the highest microalgae biomass production (1.5 ± 0.131 DW g L−1) can be obtained using undiluted DDW with the largest biomass productivity of 63.136 ± 1.040 mg L−1 day−1 and a specific growth rate of 0.094 ± 0.006 day−1. It was found that lipid content reached the highest level (1.644 mg mL−1) in undiluted DWW at the end of the exponential growth phase. Additionally, lipid productivity of C. sorokiniana grown in synthetic and undiluted DWW media was 57.870 and 79.962 mg L−1 day−1, respectively. Based on the FA profile, wastewater-grown microalgae produced lipids with 40% saturated FAs and 33% unsaturated FAs. According to physico-chemical characteristics, biodiesel produced from wastewater-grown C. sorokiniana is useful for high-quality biodiesel production. The NMR and FTIR spectra confirmed that biodiesel produced from C. sorokiniana was composed of FA methyl esters. Based on empirical formulas, the theoretical biomethane productivity of microalgae ranged from 0.353 to 0.644 L CH4 g−1 VS. Thus, the low-cost nutrient media of DWW can be used to culture C. sorokiniana as an efficient strain for sustainable and cost-effective biofuel generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All datasets generated for this study are included in the manuscript.

References

  1. Ferreira GF, Pinto LFR, Maciel Filho R, Fregolente LV (2019) A review on lipid production from microalgae: association between cultivation using waste streams and fatty acid profiles. Renew Sustain Energy Rev 109:448–466. https://doi.org/10.1016/j.rser.2019.04.052

    Article  CAS  Google Scholar 

  2. Deviram G, Mathimani T, Anto S, Ahamed TS, Ananth DA, Pugazhendhi A (2020) Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J Clean Prod 253:119770. https://doi.org/10.1016/j.jclepro.2019.119770

    Article  CAS  Google Scholar 

  3. Arenas EG, Rodriguez Palacio MC, Juantorena AU, Fernando SEL, Sebastian PJ (2017) Microalgae as a potential source for biodiesel production: techniques, methods, and other challenges. Int J Energy Res 41:761–789. https://doi.org/10.1002/er.3663

    Article  CAS  Google Scholar 

  4. Mathimani T, Uma L, Prabaharan D (2018) Formulation of low-cost seawater medium for high cell density and high lipid content of Chlorella vulgaris BDUG 91771 using central composite design in biodiesel perspective. J Clean Prod 198:575–586. https://doi.org/10.1016/j.jclepro.2018.06.303

    Article  CAS  Google Scholar 

  5. Udaiyappan AFM, Hasan HA, Takriff MS, Abdullah SRS (2017) A review of the potentials, challenges and current status of microalgae biomass applications in industrial wastewater treatment. J Water Process Eng 20:8–21. https://doi.org/10.1016/j.jwpe.2017.09.006

    Article  Google Scholar 

  6. Whangchai K, Mathimani T, Sekar M, Shanmugam S, Brindhadevi K, Van Hung T, Chinnathambi A, Alharbi SA, Pugazhendhi A (2021) Synergistic supplementation of organic carbon substrates for upgrading neutral lipids and fatty acids contents in microalga. J Environ Chem Eng 9:105482. https://doi.org/10.1016/j.jece.2021.105482

    Article  CAS  Google Scholar 

  7. Adeloye A, Gutierrez T (2021) Integrating micro-algae into wastewater treatment: a review. Sci Total Environ 752:142168. https://doi.org/10.1016/j.scitotenv.2020.142168

    Article  CAS  PubMed  Google Scholar 

  8. Arun S, Sinharoy A, Pakshirajan K, Lens PNL (2020) Algae based microbial fuel cells for wastewater treatment and recovery of value-added products. Renew Sustain Energy Rev 132:110041. https://doi.org/10.1016/j.rser.2020.110041

    Article  CAS  Google Scholar 

  9. Sharma J, Kumar SS, Bishnoi NR, Pugazhendhi A (2018) Enhancement of lipid production from algal biomass through various growth parameters. J Mol Liq 269:712–720. https://doi.org/10.1016/j.molliq.2018.08.103

    Article  CAS  Google Scholar 

  10. Tocchi C, Federici E, Fidati L, Manzi R, Vincigurerra V, Petruccioli M (2012) Aerobic treatment of dairy wastewater in an industrial three-reactor plant: effect of aeration regime on performances and on protozoan and bacterial communities. Water Res 46:3334–3344. https://doi.org/10.1016/j.watres.2012.03.032

    Article  CAS  PubMed  Google Scholar 

  11. Daneshvar E, Zarrinmehr MJ, Koutra E, Kornaros M, Farhadian O, Bhatnagar A (2019) Sequential cultivation of microalgae in raw and recycled dairy wastewater: microalgal growth, wastewater treatment and biochemical composition. Bioresour Technol 273:556–564. https://doi.org/10.1016/j.biortech.2018.11.059

    Article  CAS  PubMed  Google Scholar 

  12. Kumar PK, Vijaya Krishna S, Verma K, Pooja K, Bhagawan D, Himabindu V (2018) Phycoremediation of sewage wastewater and industrial flue gases for biomass generation from microalgae. S Afr J Chem Eng 25:133–146. https://doi.org/10.1016/j.sajce.2018.04.006

    Article  Google Scholar 

  13. Wang JH, Zhuang LL, Xu XQ, Deantes-Espinosa VM, Wang XX, Hu HY (2018) Microalgal attachment and attached systems for biomass production and wastewater treatment. Renew Sustain Energy Rev 92:331–342. https://doi.org/10.1016/j.rser.2018.04.081

    Article  Google Scholar 

  14. Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy 137:282–291. https://doi.org/10.1016/j.apenergy.2014.10.032

    Article  Google Scholar 

  15. Ferreira A, Marques P, Ribeiro B, Assemany P, de Mendonça HV, Barata A, Oliveira AC, Reis A, Pinheiro HM, Gouveia L (2018) Combining biotechnology with circular bioeconomy: from poultry, swine, cattle, brewery, dairy and urban wastewaters to biohydrogen. Environ Res 164:32–38. https://doi.org/10.1016/j.envres.2018.02.007

    Article  CAS  PubMed  Google Scholar 

  16. Sharma J, Kumar V, Kumar SS, Malyan SK, Mathimani T, Bishnoi NR, Pugazhendhi A (2020) Microalgal consortia for municipal wastewater treatment – lipid augmentation and fatty acid profiling for biodiesel production. J Photochem Photobiol B Biol 202:111638. https://doi.org/10.1016/j.jphotobiol.2019.111638

    Article  CAS  Google Scholar 

  17. Singh R, Birru R, Sibi G (2017) Nutrient removal efficiencies of Chlorella vulgaris from urban wastewater for reduced eutrophication. J Environ Prot 08:1–11. https://doi.org/10.4236/jep.2017.81001

    Article  CAS  Google Scholar 

  18. Tao L, Aden A (2009) The economics of current and future biofuels. In Vitro Cell Dev Biol Plant 45:199–217. https://doi.org/10.1007/978-1-4419-7145-6_4

    Article  Google Scholar 

  19. Shields-Menard SA, Amirsadeghi M, French WT, Boopathy R (2018) A review on microbial lipids as a potential biofuel. Bioresour Technol 259:451–460. https://doi.org/10.1016/j.biortech.2018.03.080

    Article  CAS  PubMed  Google Scholar 

  20. Hoang AT, Pham VV (2019) A study of emission characteristic, deposits, and lubrication oil degradation of a diesel engine running on preheated vegetable oil and diesel oil. Energy Sources Part A Recover Util Environ Eff 41:611–625. https://doi.org/10.1080/15567036.2018.1520344

    Article  CAS  Google Scholar 

  21. Mohsenpour SF, Hennige S, Willoughby N, Adeloye A, Gutierrez T (2020) Integrating micro-algae into wastewater treatment: a review. Sci Total Environ 752:142168. https://doi.org/10.1016/j.scitotenv.2020.142168

    Article  CAS  PubMed  Google Scholar 

  22. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639. https://doi.org/10.1111/j.1365-313X.2008.03492.x

    Article  CAS  PubMed  Google Scholar 

  23. Ilavarasi A, Mubarakali D, Praveenkumar R, Baldev E, Thajuddin N (2011) Optimization of various growth media to freshwater microalgae for biomass production. Biotechnology 10:540–545. https://doi.org/10.3923/biotech.2011.540.545

    Article  CAS  Google Scholar 

  24. Brar A, Kumar M, Pareek N (2019) Comparative appraisal of biomass production, remediation, and bioenergy generation potential of microalgae in dairy wastewater. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00678

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka M, Moheimani N (eds) Algae for Biofuels and Energy. Springer, Dordrecht, pp 265–284. https://doi.org/10.1007/978-94-007-5479-9_16

    Chapter  Google Scholar 

  26. Chai S, Shi J, Huang T, Guo Y, Wei J, Guo M, Li L, Dou S, Liu L, Liu G (2018) Characterization of chlorella sorokiniana growth properties in monosaccharide-supplemented batch culture. PLoS One 13:e0199873. https://doi.org/10.1371/journal.pone.0199873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Breuer G, Evers WAC, de Vree JH, Kleinegris DMM, Martens DE, Wijffels RH, Lamers PP (2013) Analysis of fatty acid content and composition in microalgae. J Vis Exp 80:e50628. https://doi.org/10.3791/50628

    Article  CAS  Google Scholar 

  28. Song M, Pei H, Hu W, Ma G (2013) Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour Technol 141:245–251. https://doi.org/10.1016/j.biortech.2013.02.024

    Article  CAS  PubMed  Google Scholar 

  29. Arguelles EDLR, Laurena AC, Monsalud RG, Martinez-Goss MR (2018) Fatty acid profile and fuel-derived physico-chemical properties of biodiesel obtained from an indigenous green microalga, Desmodesmus sp. (I-AU1), as potential source of renewable lipid and high quality biodiesel. J Appl Phycol 30:411–419. https://doi.org/10.1007/s10811-017-1264-6

    Article  CAS  Google Scholar 

  30. Nautiyal P, Subramanian KA, Dastidar MG (2014) Production and characterization of biodiesel from algae. Fuel Process Technol 120:79–88. https://doi.org/10.1016/j.fuproc.2013.12.003

    Article  CAS  Google Scholar 

  31. Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416. https://doi.org/10.1016/j.biotechadv.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  32. Pereira MIB, Chagas BME, Sassi R, Medeiros GF, Aguiar EM, Borba LHF, Silva EPE, Neto JCA, Rangel AHN (2019) Mixotrophic cultivation of Spirulina platensis in dairy wastewater: effects on the production of biomass, biochemical composition and antioxidant capacity. PLoS One 14:e0224294. https://doi.org/10.1371/journal.pone.0224294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Brar A, Kumar M, Singh RP, Vivekanand V, Pareek N (2020) Phycoremediation coupled biomethane production employing sewage wastewater: energy balance and feasibility analysis. Bioresour Technol 308:123292. https://doi.org/10.1016/j.biortech.2020.123292

    Article  CAS  PubMed  Google Scholar 

  34. Roostaei J, Zhang Y, Gopalakrishnan K, Ochocki AJ (2018) Mixotrophic microalgae biofilm: a novel algae cultivation strategy for improved productivity and cost-efficiency of biofuel feedstock production. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-20437-7

    Article  CAS  Google Scholar 

  35. Guldhe A, Ansari FA, Singh P, Bux F (2017) Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecol Eng 99:47–53. https://doi.org/10.1016/j.ecoleng.2016.11.013

    Article  Google Scholar 

  36. Feng G-D, Zhang F, Cheng L-H, Xu X-H, Zhang L, Chen H-L (2013) Evaluation of FT-IR and Nile Red methods for microalgal lipid characterization and biomass composition determination. Bioresour Technol 128:107–112. https://doi.org/10.1016/j.biortech.2012.09.123

    Article  CAS  PubMed  Google Scholar 

  37. Malibari R, Sayegh F, Elazzazy AM, Baeshen MN, Dourou M, Aggelis G (2018) Reuse of shrimp farm wastewater as growth medium for marine microalgae isolated from Red Sea-Jeddah. J Clean Prod 198:160–169. https://doi.org/10.1016/j.jclepro.2018.07.037

    Article  CAS  Google Scholar 

  38. Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47:4294–4302. https://doi.org/10.1016/j.watres.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  39. Xia J, Gong S, Jin X, Wan M, Nie Z (2013) Effects of simulated flue gases on growth and lipid production of Chlorella sorokiniana CS-01. J Cent South Univ 20:730–736. https://doi.org/10.1007/s11771-013-1541-8

    Article  CAS  Google Scholar 

  40. Idris NA, Loh SK, Lau HLN, Yau TC, Mustafa EM, Vello V, Moi PS (2018) Palm oil mill effluent as algae cultivation medium for biodiesel production. J Oil Palm Res 30:141–149. https://doi.org/10.21894/jopr.2018.0011

    Article  CAS  Google Scholar 

  41. Knothe G (2009) Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ Sci 2:759–766. https://doi.org/10.1039/B903941D

    Article  CAS  Google Scholar 

  42. Mandotra SK, Kumar P, Suseela MR, Ramteke PW (2014) Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresour Technol 156:42–47. https://doi.org/10.1016/j.biortech.2013.12.127

    Article  CAS  PubMed  Google Scholar 

  43. Alptekin E, Canakci M (2008) Determination of the density and the viscosities of biodiesel-diesel fuel blends. Renew Energy 33:2623–2630. https://doi.org/10.1016/j.renene.2008.02.020

    Article  CAS  Google Scholar 

  44. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169. https://doi.org/10.1016/j.rser.2011.07.143

    Article  CAS  Google Scholar 

  45. Deshmukh S, Bala K, Kumar R (2019) Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production. Environ Sci Pollut Res 26:24462–24473. https://doi.org/10.1007/s11356-019-05692

    Article  CAS  Google Scholar 

  46. Chokshi K, Pancha I, Ghosh A, Mishra S (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour Technol 221:455–460. https://doi.org/10.1016/j.biortech.2016.09.070

    Article  CAS  PubMed  Google Scholar 

  47. Francisco ÉC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403. https://doi.org/10.1002/jctb.2338

    Article  CAS  Google Scholar 

  48. Giakoumis EG (2018) Analysis of 22 vegetable oils’ physico-chemical properties and fatty acid composition on a statistical basis, and correlation with the degree of unsaturation. Renew Energy 126:403–419. https://doi.org/10.1016/j.renene.2018.03.057

    Article  CAS  Google Scholar 

  49. Rai MP, Gupta S (2017) Effect of media composition and light supply on biomass, lipid content and FAME profile for quality biofuel production from Scenedesmus abundans. Energy Convers Manag 141:85–92. https://doi.org/10.1016/j.enconman.2016.05.018

    Article  CAS  Google Scholar 

  50. Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives - a mini review. Energy 78:104–113. https://doi.org/10.1016/j.energy.2014.04.003

    Article  CAS  Google Scholar 

  51. Bagul SY, Bharti RK, Dhar DW (2017) Assessing biodiesel quality parameters for wastewater grown Chlorella sp. Water Sci Technol 76:719–727. https://doi.org/10.2166/wst.2017.223

    Article  CAS  PubMed  Google Scholar 

  52. Kumar R, Bansal V, Tiwari AK, Sharma M, Puri SK, Patel MB, Sarpal AS (2011) Estimation of glycerides and free fatty acid in oils extracted from various seeds from the Indian region by NMR spectroscopy. J Am Oil Chem Soc 88:1675–1685. https://doi.org/10.1007/s11746-011-1846-4

    Article  CAS  Google Scholar 

  53. Zhu L, Li Z, Hiltunen E (2018) Theoretical assessment of biomethane production from algal residues after biodiesel production. Wiley Interdiscip Rev Energy Environ 7:e273. https://doi.org/10.1002/wene.273

    Article  CAS  Google Scholar 

  54. Choudhary P, Bhattacharya A, Prajapati SK, Kaushik P, Malik A (2015) Phycoremediation-coupled biomethanation of microalgal biomass. In: Kim SK (ed) Handbook of marine microlage. Elsevier, Amsterdam, pp 483–499. https://doi.org/10.1016/B978-0-12-800776-1.00032-7

    Chapter  Google Scholar 

  55. Prajapati SK, Malik A, Vijay VK (2014) Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion. Appl Energy 114:790–797. https://doi.org/10.1016/j.apenergy.2013.08.021

    Article  CAS  Google Scholar 

  56. Prajapati SK, Kaushik P, Malik A, Vijay VK (2013) Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnol Adv 31:1408–1425. https://doi.org/10.1016/j.biotechadv.2013.06.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shiraz University Research Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajar Zamani.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidian, N., Zamani, H. Potential of Chlorella sorokiniana Cultivated in Dairy Wastewater for Bioenergy and Biodiesel Production. Bioenerg. Res. 15, 334–345 (2022). https://doi.org/10.1007/s12155-021-10338-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10338-5

Keywords

Navigation