Skip to main content

Advertisement

Log in

Genotype-Environment-Management Interactions in Biomass Yield and Feedstock Composition of Photoperiod-Sensitive Energy Sorghum

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Recently introduced photoperiod-sensitive (PS) biomass sorghum (Sorghum bicolor L. Moench) needs to be investigated for their yield potential under different cultivation environments with reasonable nitrogen (N) inputs. The objectives of this study were to (1) evaluate the biomass yield and feedstock quality of four sorghum hybrids with different levels of PS ranging from very PS (VPS) hybrids and to moderate PS (MPS) hybrids, and (2) determine the optimal N inputs (0~168 kg N ha−1) under four environments: combinations of both temperate (Urbana, IL) and subtropical (College Station, TX) regions during 2018 and 2019. Compared to TX, the PS sorghums in central IL showed higher yield potential and steady feedstock production with an extended day length and with less precipitation variability, especially for the VPS hybrids. The mean dry matter (DM) yields of VPS hybrids were 20.5 Mg DM ha−1 and 17.7 Mg DM ha−1 in IL and TX, respectively. The highest N use efficiency occurred at a low N rate of 56 kg N ha−1 by improving approximately 33 kg DM ha−1 per 1.0 kg N ha−1 input. Approximately 70% of the PS sorghum biomass can be utilized for biofuel production, consisting of 58-65% of the cell-wall components and 4-11% of the soluble sugar. This study demonstrated that the rainfed temperate area (e.g., IL) has a great potential for the sustainable cultivation of PS energy sorghum due to their observed high yield potential, stable production, and low N requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. United States Department of Energy (USDOE) (2016) 2016 billion-ton report: advancing domestic resources for a thriving bioeconomy, volume 1: economic availability of feedstocks. Langholtz MH, Stokes BJ, Eaton LM (Leads), ORNL/TM-2016/160. Economic Availability of Feedstocks, Oak Ridge National Laboratory, Oak Ridge, TN

  2. Zegada-Lizarazu W, Monti A (2012) Are we ready to cultivate sweet sorghum as a bioenergy feedstock? A review on field management practices. Biomass Bioenergy 40:1–12. https://doi.org/10.1016/j.biombioe.2012.01.048

    Article  Google Scholar 

  3. Rooney WL (2014) Sorghum. In: Karlen DL (ed) Cellulosic energy cropping systems, 1st edn. Wiley, New York, pp 109–129

    Chapter  Google Scholar 

  4. Rooney WL, Blumenthal J, Bean B, Mullet JE (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels Bioprod Biorefin 1:147–157. https://doi.org/10.1002/bbb.15

    Article  CAS  Google Scholar 

  5. Rooney WL, Aydin S (1999) Genetic control of a photoperiod-sensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39:397–400. https://doi.org/10.2135/cropsci1999.0011183X0039000200016x

    Article  Google Scholar 

  6. Miller FR, Quinby JR, Cruzado HJ (1968) Expression of known maturity genes of sorghum in temperature and tropical environments1. Crop Sci 8:675–677. https://doi.org/10.2135/cropsci1968.0011183X000800060010x

    Article  Google Scholar 

  7. Olson SN, Ritter K, Rooney WL, Kemanian A, McCarl BA, Zhang Y, Hall S, Packer D, Mullet J (2012) High biomass yield energy sorghum: developing a genetic model for C4 grass bioenergy crops. Biofuels Bioprod Biorefin 6:640–655. https://doi.org/10.1002/bbb.1357

    Article  CAS  Google Scholar 

  8. Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, Anderson R, Olson SN, Rooney W (2014) Energy Sorghum—a genetic model for the design of C4 grass bioenergy crops. J Exp Bot 65:3479–3489. https://doi.org/10.1093/jxb/eru229

    Article  PubMed  Google Scholar 

  9. Turhollow AF, Webb EG, Downing ME (2010) Review of sorghum production practices: applications for bioenergy. Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6283. Managed by UT-BATTELLE, LLC for the U.S. Department of Energy under contract DE-AC05-00OR22725

  10. Maughan M, Voigt T, Parrish A, Bollero G, Rooney WL, Lee DK (2012) Forage and energy sorghum responses to nitrogen fertilization in central and southern Illinois. Agron J 104:1032–1040. https://doi.org/10.2134/agronj2011.0408

    Article  Google Scholar 

  11. Meki MN, Ogoshi RM, Kiniry JR, Crow SE, Youkhana AH, Nakahata MH, Littlejohn K (2017) Performance evaluation of biomass sorghum in Hawaii and Texas. Ind Crop Prod 103:257–266. https://doi.org/10.1016/j.indcrop.2017.04.014

    Article  Google Scholar 

  12. McKinley BA, Olson SN, Ritter KB et al (2018) Variation in energy sorghum hybrid TX08001 biomass composition and lignin chemistry during development under irrigated and non-irrigated field conditions. PLoS One 13:e0195863. https://doi.org/10.1371/journal.pone.0195863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoffmann L, Rooney WL (2014) Accumulation of biomass and compositional change over the growth season for six photoperiod sorghum lines. BioEnergy Res 7:811–815. https://doi.org/10.1007/s12155-013-9405-5

  14. Bennett AS, Anex RP (2009) Production, transportation and milling costs of sweet sorghum as a feedstock for centralized bioethanol production in the upper Midwest. Bioresour Technol 100:1595–1607. https://doi.org/10.1016/j.biortech.2008.09.023

    Article  CAS  PubMed  Google Scholar 

  15. Li C, Aston JE, Lacey JA, Thompson VS, Thompson DN (2016) Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew Sust Energ Rev 65:525–536. https://doi.org/10.1016/j.rser.2016.06.063

    Article  CAS  Google Scholar 

  16. Hoffmann L (2012) Introduction and selection of photoperiod sensitive sorghum genotypes for agronomic fitness and biomass composition. Dissertation, Texas A&M University

  17. Bridgwater AV (2012) Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38:68–94. https://doi.org/10.1016/j.biombioe.2011.01.048

    Article  CAS  Google Scholar 

  18. Kenney KL, Smith WA, Gresham GL, Westover TL (2013) Understanding biomass feedstock variability. Biofuels 4:111–127. https://doi.org/10.4155/bfs.12.83

    Article  CAS  Google Scholar 

  19. McBee GG, Creelman RA, Miller FR (1988) Ethanol yield and energy potential of stems from a spectrum of sorghum biomass types. Biomass 17:203–211. https://doi.org/10.1016/0144-4565(88)90114-X

    Article  CAS  Google Scholar 

  20. Amaducci S, Monti A, Venturi G (2004) Non-structural carbohydrates and fibre components in sweet and fibre sorghum as affected by low and normal input techniques. Ind Crop Prod 20:111–118. https://doi.org/10.1016/j.indcrop.2003.12.016

    Article  CAS  Google Scholar 

  21. Gill JR, Burks PS, Staggenborg SA, Odvody GN, Heiniger RW, Macoon B, Moore KJ, Barrett M, Rooney WL (2014) Yield results and stability analysis from the sorghum regional biomass feedstock trial. BioEnergy Res 7:1026–1034. https://doi.org/10.1007/s12155-014-9445-5

    Article  CAS  Google Scholar 

  22. Lee DK, Aberle E, Anderson EK, Anderson W, Baldwin BS, Baltensperger D, Barrett M, Blumenthal J, Bonos S, Bouton J, Bransby DI, Brummer C, Burks PS, Chen C, Daly C, Egenolf J, Farris RL, Fike JH, Gaussoin R, Gill JR, Gravois K, Halbleib MD, Hale A, Hanna W, Harmoney K, Heaton EA, Heiniger RW, Hoffman L, Hong CO, Kakani G, Kallenbach R, Macoon B, Medley JC, Missaoui A, Mitchell R, Moore KJ, Morrison JI, Odvody GN, Richwine JD, Ogoshi R, Parrish JR, Quinn L, Richard E, Rooney WL, Rushing JB, Schnell R, Sousek M, Staggenborg SA, Tew T, Uehara G, Viands DR, Voigt T, Williams D, Williams L, Wilson LT, Wycislo A, Yang Y, Owens V (2018) Biomass production of herbaceous energy crops in the United States: field trial results and yield potential maps from the multiyear regional feedstock partnership. GCB Bioenergy 10:698–716. https://doi.org/10.1111/gcbb.12493

    Article  Google Scholar 

  23. Rivera-Burgos LA, Volenec JJ, Ejeta G (2019) Biomass and bioenergy potential of brown midrib sweet sorghum germplasm. Front Plant Sci 10:1142. https://doi.org/10.3389/fpls.2019.01142

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rocateli AC, Raper RL, Balkcom KS, Arriaga FJ, Bransby DI (2012) Biomass sorghum production and components under different irrigation/tillage systems for the southeastern U.S. Ind Crop Prod 36:589–598. https://doi.org/10.1016/j.indcrop.2011.11.007

    Article  Google Scholar 

  25. Packer D (2011) High-biomass sorghums for biomass fuel production. Dissertation, Texas A&M University

  26. Almodares A, Hadi MR (2009) The effects of nitrogen fertilizer on chemical compositions in corn and sweet sorghum. American-Eurasian J Agric & Environ Sci 6:441–446

  27. Rathke GW, Diepenbrock W (2006) Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop. Eur J Agron 24:35–44. https://doi.org/10.1016/j.eja.2005.04.003

    Article  Google Scholar 

  28. Rathke GW, Wienhold BJ, Wilhelm WW, Diepenbrock W (2007) Tillage and rotation effect on corn–soybean energy balances in eastern Nebraska. Soil Tillage Res 97:60–70. https://doi.org/10.1016/j.still.2007.08.008

    Article  Google Scholar 

  29. Tamang PL, Bronson KF, Malapati A, Schwartz R, Johnson J, Moore-Kucera J (2011) Nitrogen requirements for ethanol production from sweet and photoperiod sensitive sorghums in the southern high plains. Agron J 103:431–440. https://doi.org/10.2134/agronj2010.0288

    Article  CAS  Google Scholar 

  30. Fazio S, Monti A (2011) Life cycle assessment of different bioenergy production systems including perennial and annual crops. Biomass Bioenergy 35:4868–4878. https://doi.org/10.1016/j.biombioe.2011.10.014

    Article  CAS  Google Scholar 

  31. Olson SN, Ritter K, Medley J et al (2013) Energy sorghum hybrids: functional dynamics of high nitrogen use efficiency. Biomass Bioenergy 56:307–316. https://doi.org/10.1016/j.biombioe.2013.04.028

    Article  CAS  Google Scholar 

  32. Wolfrum E, Payne C, Stefaniak T et al (2013) Multivariate calibration models for sorghum composition using near-infrared spectroscopy. Technical Report NREL/TP-510056838. Golden, CO: National Renewable Energy Laboratory (NREL)

  33. Maranville JW, Clark RB, Ross WM (1980) Nitrogen efficiency in grain sorghum. J Plant Nutr 2:577–589. https://doi.org/10.1080/01904168009362800

    Article  CAS  Google Scholar 

  34. Maw MJW, Houx JH III, Fritschi FB (2017) Nitrogen use efficiency and yield response of high biomass sorghum in the lower Midwest. Agron J 109:115–121. https://doi.org/10.2134/agronj2016.01.0044

    Article  Google Scholar 

  35. Sadras VO, Lemaire G (2014) Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crop Res 164:54–64. https://doi.org/10.1016/j.fcr.2014.05.006

    Article  Google Scholar 

  36. SAS Institute (2007) SAS/STAT 9.2 Users’s guide. SAS Inst, Cary, NC

  37. Zhao YL, Dolat A, Steinberger Y, Wang X, Osman A, Xie GH (2009) Biomass yield and changes in chemical composition of sweet sorghum cultivars grown for biofuel. Field Crop Res 111:55–64. https://doi.org/10.1016/j.fcr.2008.10.006

    Article  Google Scholar 

  38. Wolabu TW, Tadege M (2016) Photoperiod response and floral transition in sorghum. Plant Signal Behav 11:e1261232. https://doi.org/10.1080/15592324.2016.1261232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hatfield JL, Prueger JH (2004) Impacts of changing precipitation patterns on water quality. J Soil Water Conserv 59:51–58

    Google Scholar 

  40. Assefa Y, Staggenborg SA, Prasad VPV (2010) Grain sorghum water requirement and responses to drought stress: a review. Crop Management 9:1–11. https://doi.org/10.1094/cm-2010-1109-01-rv

  41. Song Y, Jain AK, Landuyt W, Kheshgi HS, Khanna M (2015) Estimates of biomass yield for perennial bioenergy grasses in the USA. BioEnergy Res 8:688–715. https://doi.org/10.1007/s12155-014-9546-1

    Article  CAS  Google Scholar 

  42. Barbanti L, Grandi S, Vecchi A, Venturi G (2006) Sweet and fibre sorghum (Sorghum bicolor (L.) Moench), energy crops in the frame of environmental protection from excessive nitrogen loads. Eur J Agron 25:30–39. https://doi.org/10.1016/j.eja.2006.03.001

    Article  Google Scholar 

  43. Propheter J, Staggenborg S (2010) Performance of annual and perennial biofuel crops: nutrient removal during the first two years. Agron J 102:798–805. https://doi.org/10.2134/agronj2009.0462

    Article  CAS  Google Scholar 

  44. Heitman AJ, Castillo MS, Smyth TJ, Crozier CR, Wang Z, Heiniger RW, Gehl RJ (2017) Nitrogen fertilization effects on yield and nutrient removal of biomass and sweet sorghum. Agron J 109:1352–1358. https://doi.org/10.2134/agronj2016.12.0710

    Article  CAS  Google Scholar 

  45. Maw JW, Houx JH III, Fritschi FB (2020) Nitrogen fertilization of high biomass sorghum affects macro- and micronutrient accumulation and tissue concentrations. Ind Crop Prod 156:112819. https://doi.org/10.1016/j.indcrop.2020.112819

    Article  CAS  Google Scholar 

  46. Fernandes G, Braga TG, Fisher J et al (2014) Evaluation of potential ethanol production and nutrients for four varieties of sweet sorghum during maturation. Renew Energy 71:518–524. https://doi.org/10.1016/j.renene.2014.05.033

    Article  CAS  Google Scholar 

  47. Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32:216–223. https://doi.org/10.1016/j.biombioe.2007.09.012

    Article  CAS  Google Scholar 

  48. Emerson R, Hoover A, Ray A, Lacey J, Cortez M, Payne C, Karlen D, Birrell S, Laird D, Kallenbach R, Egenolf J, Sousek M, Voigt T (2014) Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels 5:17–291. https://doi.org/10.1080/17597269.2014.913904

    Article  CAS  Google Scholar 

  49. Ong RG, Higbee A, Bottoms S, Dickinson Q, Xie D, Smith SA, Serate J, Pohlmann E, Jones AD, Coon JJ, Sato TK, Sanford GR, Eilert D, Oates LG, Piotrowski JS, Bates DM, Cavalier D, Zhang Y (2016) Inhibition of microbial biofuel production in droughtstressed switchgrass hydrolysate. Biotechnol Biofuels 9:237–250. https://doi.org/10.1186/s13068-016-0657-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hoover A, Emerson R, Ray A, Stevens D, Morgan S, Cortez M, Kallenbach R, Sousek M, Farris R, Daubaras D (2018) Impact of drought on chemical composition and sugar yields from dilute-acid pretreatment and enzymatic hydrolysis of miscanthus, a tall fescue mixture, and switchgrass. Front Energy Res 6:54. https://doi.org/10.3389/fenrg.2018.00054

    Article  Google Scholar 

  51. Singh MP, Erickson JE, Sollenberger LE, Woodard KR, Vendramini JMB, Fedenko JR (2012) Mineral composition and biomass partitioning of sweet sorghum grown for bioenergy in the southeastern USA. Biomass Bioenergy 47:1–8. https://doi.org/10.1016/j.biombioe.2012.10.022

    Article  CAS  Google Scholar 

  52. Jönsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16. https://doi.org/10.1186/1754-6834-6-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Foust TD, Aden A, Dutta A, Phillips S (2009) An economic and environmental comparison of a biochemical and a thermochemical lignocellulosic ethanol conversion processes. Cellulose 16:547–565. https://doi.org/10.1007/s10570-009-9317-x

    Article  CAS  Google Scholar 

  54. Zhao D, Reddy KR, Kakani VG, Reddy VR (2005) Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum. Eur J Agron 22:391–403. https://doi.org/10.1016/j.eja.2004.06.005

    Article  CAS  Google Scholar 

  55. Olugbemi O, Abiola Ababyomi Y (2016) Effects of nitrogen application on growth and ethanol yield of sweet sorghum [Sorghum bicolor (L.) Moench] varieties. Adv Agric 2016:8329754. https://doi.org/10.1155/2016/8329754

  56. Ameen A, Yang X, Chen F, Tang C, Du F, Fahad S, Xie GH (2017) Biomass yield and nutrient uptake of energy sorghum in response to nitrogen fertilizer rate on marginal land in a semi-arid region. BioEnergy Res 10:363–376. https://doi.org/10.1007/s12155-016-9804-5

  57. Tang C, Yang X, Chen X, Ameen A, Xie G (2018) Sorghum biomass and quality and soil nitrogen balance response to nitrogen rate on semiarid marginal land. Field Crop Res 215:12–22. https://doi.org/10.1016/j.fcr.2017.09.031

  58. Beyaert RP and Roy RC (2005) Influence of nitrogen fertilization on multi-cut forage sorghum–sudangrass yield and nitrogen use. Agron J 97:1493–1501. https://doi.org/10.2134/agronj2005.0079

  59. Soileau JM and Bradford BN (1985) Biomass and sugar yield response of sweet sorghum to lime and fertilizer. Agron J 77:471–475. https://doi.org/10.2134/agronj1985.00021962007700030025x

  60. Marsalis MA, Angadi SV, Contreras-Govea FE (2010) Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crop Res 116:52–57. https://doi.org/10.1016/j.fcr.2009.11.009

  61. Anfinrud R, Cihacek L, Johnson BL, Ji Y, Berti MT (2013) Sorghum and kenaf biomass yield and quality response to nitrogen fertilization in the Northern Great Plains of the USA. Ind Crop Prod 50:159–165. https://doi.org/10.1016/j.indcrop.2013.07.022

  62. Mahmud K, Ahmad I, Ayub M (2003) Effect of nitrogen and phosphorus on the fodder yield and quality of two sorghum cultivars (Sorghum bicolor L.). Int J Agric Biol 5:61–63

  63. Zweifel TR, Maranville JW, Ross WM et al (1987) Nitrogen fertility and irrigation influence on grain sorghum nitrogen efficiency. Agron J 79:419–422. https://doi.org/10.2134/agronj1987.00021962007900030001x

  64. Grennel JL (2014) Yield and carbon exchange of sorghum grown as advanced biofuel feedstock on abandoned agricultural land in southeastern Ohio. Thesis. Ohio Univ, Athens

  65. Maranville JW, Pandey RK, and Sirifi S (2002) Comparison of nitrogen use efficiency of a newly developed sorghum hybrid and two improved cultivars in the Sahel of West Africa. Commun Soil Sci Plant Anal 33:1519–1536. https://doi.org/10.1081/CSS-120004298

  66. Holman JD, Obour AK, and Mengel DB (2019) Nitrogen application effects on forage sorghum production and nitrate concentration. J Plant Nutr 42:2794–2804. https://doi.org/10.1080/01904167.2019.1659321

  67. Maw MJW, Houx JH, Fritschi FB (2019) Nitrogen content and use efficiency of sweet sorghum grown in the lower Midwest. Agron J 111:2920–2928. https://doi.org/10.2134/agronj2018.08.0489

  68. Wiedenfeld RP (1984) Nutrient requirements and use efficiency by sweet sorghum. Energy Agr 3:49–59. https://doi.org/10.1016/0167-5826(84)90004-4

  69. Adams CB, Erickson JE, Singh MP (2015) Investigation and synthesis of sweet sorghum crop responses to nitrogen and potassium fertilization. Field Crop Res 178:1–7. https://doi.org/10.1016/j.fcr.2015.03.014

Download references

Funding

This work was funded by the DOE Center for Advanced Bioenergy and Bioproducts Innovation (US Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC0018420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Lee.

Ethics declarations

Disclaimer

Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the US Department of Energy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schetter, A., Lin, CH., Zumpf, C. et al. Genotype-Environment-Management Interactions in Biomass Yield and Feedstock Composition of Photoperiod-Sensitive Energy Sorghum. Bioenerg. Res. 15, 1017–1032 (2022). https://doi.org/10.1007/s12155-021-10272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10272-6

Keywords

Navigation