Skip to main content

Advertisement

Log in

Biogas Production and Microbial Communities in the Anaerobic Digestion of Sewage Sludge Under Hydrothermal Pretreatment with Air and a Catalyst

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Hydrothermal pretreatment (HTP) of sewage sludge (SS) has been shown to improve the subsequent biogas production by anaerobic digestion (AD), but the effect of catalysts on HTP performance was less explored. This study intended to investigate the SS pretreatment by wet air oxidation (WAO) with the addition of K2CO3 as a catalyst on the performance of methane production by AD. WAO was found to improve the solubilization of SS, the soluble chemical oxygen demand, dissolved organic carbon, and total dissolved nitrogen. The methane yield from WAO increased from 202 mL/gVSin with no catalyst added to 277 mL/gVSin with 10 wt% of K2CO3 added at 180 °C with 30 min of residence time. Under this pretreatment condition, the highest methane production rate could achieve 15.8 mL/gVSin day, and the percentage of methane reached 73%. The structure of the microbial community involved in the AD was affected by the residence time, working gas, and catalyst of the HTP process. The results showed that Bacteroidetes, Bacteroidia, and SC103 were the dominant phylum, class, and genus of bacteria, respectively, of almost all of the samples. In addition, the most abundant archaeal order was Methanosarcinales, while Methanosaeta was the dominant archaeal genus of most of the samples. However, Methanosarcina largely increased the relative abundance, corresponding to the amount of K2CO3 catalyst used. The findings in this study demonstrated the potential use of K2CO3 during WAO of SS and implied the link between shift of methanogen community and the enhanced methane yield in AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Anaerobic digestion

AS:

Anaerobic sludge

CH4 :

Methane

COD:

Chemical oxygen demand

CO2 :

Carbon dioxide

DI:

De-ionized

DGGE:

Denaturing gradient gel electrophoresis

DOC:

Dissolved organic carbon

FISH:

Fluorescent in situ hybridization

HTP:

Hydrothermal pretreatment

N2 :

Nitrogen

OTU:

Operational taxonomic units

PCR:

Polymerase chain reaction

RT:

Reaction time

RT-PCR:

Reverse transcription polymerase chain reaction

SCOD:

Soluble chemical oxygen demand

SS:

Sewage sludge

TDN:

Total dissolved nitrogen

TH:

Thermal hydrolysis

TS:

Total solids

VFAs:

Volatile fatty acids

VS:

Volatile solids

VSR:

Volatile solids reduction

WAO:

Wet air oxidation

WO:

Wet oxidation

References

  1. Wang L, Chang Y, Li A (2019) Hydrothermal carbonization for energy-efficient processing of sewage sludge: a review. Renew Sust Energ Rev 108:423–440. https://doi.org/10.1016/j.rser.2019.04.011

    Article  CAS  Google Scholar 

  2. Zhen G, Lu X, Kato H, Zhao Y, Li YY (2017) Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: current advances, full-scale application and future perspectives. Renew Sust Energ Rev 69:559–577. https://doi.org/10.1016/j.rser.2016.11.187

    Article  CAS  Google Scholar 

  3. Le T, Vo P, Do T, Tran L, Truong H, Le T, Chen YH, Chang CC, Chang C, Tran Q, Tran T, Manh D (2019) Effect of assisted ultrasonication and ozone pretreatments on sludge characteristics and yield of biogas production. Processes 7(10):743. https://doi.org/10.3390/pr7100743

    Article  CAS  Google Scholar 

  4. Escala M, Zumbühl T, Koller C, Junge R, Krebs R (2013) Hydrothermal carbonization as an energy-efficient alternative to established drying technologies for sewage sludge: a feasibility study on a laboratory scale. Energy Fuel 27(1):454–460. https://doi.org/10.1021/ef3015266

    Article  CAS  Google Scholar 

  5. Tyagi VK, Lo SL (2013) Sludge: a waste or renewable source for energy and resources recovery? Renew Sust Energ Rev 25:708–728. https://doi.org/10.1016/j.rser.2013.05.029

    Article  CAS  Google Scholar 

  6. Fytili D, Zabaniotou A (2008) Utilization of sewage sludge in EU application of old and new methods—a review. Renew Sust Energ Rev 12(1):116–140. https://doi.org/10.1016/j.rser.2006.05.014

    Article  CAS  Google Scholar 

  7. Huang W, Zhao Z, Yuan T, Huang W, Lei Z, Zhang Z (2017) Low-temperature hydrothermal pretreatment followed by dry anaerobic digestion: a sustainable strategy for manure waste management regarding energy recovery and nutrients availability. Waste Manag 70:255–262. https://doi.org/10.1016/j.wasman.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  8. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34(6):755–781. https://doi.org/10.1016/j.pecs.2008.06.002

    Article  CAS  Google Scholar 

  9. Li X, Chen L, Mei Q, Dong B, Dai X, Ding G, Zeng EY (2018) Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res 142:75–85. https://doi.org/10.1016/j.watres.2018.05.034

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Yi H, Li H, Guo X, Xiao B (2020) Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: performance, energy balance and, enhancement mechanism. Renew Energy 147(1):2409–2416. https://doi.org/10.1016/j.renene.2019.10.051

    Article  CAS  Google Scholar 

  11. Anukam A, Mohammadi A, Naqvi M, Granström K (2019) A review of the chemistry of anaerobic digestion: methods of accelerating and optimizing process efficiency. Processes 7(8):504. https://doi.org/10.3390/pr7080504

    Article  CAS  Google Scholar 

  12. Lim JW, Chen CL, Ho IJR, Wang JY (2013) Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste. Bioresour Technol 147:193–201. https://doi.org/10.1016/j.biortech.2013.08.038

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, Park C, Kim TH, Lee M, Kim S, Kim SW, Lee J (2003) Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J Biosci Bioeng 95(3):271–275. https://doi.org/10.1016/S1389-1723(03)80028-2

    Article  CAS  PubMed  Google Scholar 

  14. Antwi E, Engler N, Nelles M, Schüch A (2019) Anaerobic digestion and the effect of hydrothermal pretreatment on the biogas yield of cocoa pods residues. Waste Manag 88:131–140. https://doi.org/10.1016/j.wasman.2019.03.034

    Article  CAS  PubMed  Google Scholar 

  15. Ferrentino R, Merzari F, Fiori L, Andreottola G (2019) Biochemical methane potential tests to evaluate anaerobic digestion enhancement by thermal hydrolysis pretreatment. Bioenergy Res 12(3):722–732. https://doi.org/10.1007/s12155-019-10017-6

    Article  CAS  Google Scholar 

  16. Aragón-Briceño C, Ross AB, Camargo-Valero MA (2017) Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl Energy 208:1357–1369. https://doi.org/10.1016/j.apenergy.2017.09.019

    Article  Google Scholar 

  17. Ennouri H, Miladi B, Diaz SZ, Güelfo LAF, Solera R, Hamdi M, Bouallagui H (2016) Effect of thermal pretreatment on the biogas production and microbial communities balance during anaerobic digestion of urban and industrial waste activated sludge. Bioresour Technol 214:184–191. https://doi.org/10.1016/j.biortech.2016.04.076

    Article  CAS  PubMed  Google Scholar 

  18. Rafique R, Poulsen TG, Nizami AS, Asam ZZ, Murphy JD, Kiely G (2010) Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production. J Energy 35(12):4556–4561. https://doi.org/10.1016/j.energy.2010.07.011

    Article  CAS  Google Scholar 

  19. Melamane X, Tandlich R, Burgess J (2007) Anaerobic digestion of fungally pre-treated wine distillery wastewater. Afr J Biotechnol 6(17):1990–1993. https://doi.org/10.5897/AJB2007.000-2305

    Article  CAS  Google Scholar 

  20. Chiu YC, Chang CN, Lin JG, Huang SJ (1997) Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion. Water Sci Technol 36(11):155–162. https://doi.org/10.1016/S0273-1223(97)00681-1

    Article  CAS  Google Scholar 

  21. Donoso-Bravo A, Pérez-Elvira S, Aymerich E, Fdz-Polanco F (2011) Assessment of the influence of thermal pre-treatment time on the macromolecular composition and anaerobic biodegradability of sewage sludge. Bioresour Technol 102(2):660–666. https://doi.org/10.1016/j.biortech.2010.08.035

    Article  CAS  PubMed  Google Scholar 

  22. Gong L, Yang X, Wang Z, Zhou J, You X (2019) Impact of hydrothermal pre-treatment on the anaerobic digestion of different solid–liquid ratio sludges and kinetic analysis. RSC Adv 9(33):19104–19113. https://doi.org/10.1039/C9RA01662G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hii K, Baroutian S, Parthasarathy R, Gapes DJ, Eshtiaghi N (2014) A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment. Bioresour Technol 155:289–299. https://doi.org/10.1016/j.biortech.2013.12.066

    Article  CAS  PubMed  Google Scholar 

  24. Kim D, Lee K, Park KY (2015) Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment. Int Biodeterior Biodegrad 101:42–46. https://doi.org/10.1016/j.ibiod.2015.03.025

    Article  CAS  Google Scholar 

  25. Mustafa AM, Li H, Radwan AA, Sheng K, Chen X (2018) Effect of hydrothermal and Ca(OH)2 pretreatments on anaerobic digestion of sugarcane bagasse for biogas production. Bioresour Technol 259:54–60. https://doi.org/10.1016/j.biortech.2018.03.028

    Article  CAS  PubMed  Google Scholar 

  26. Jeong SY, Chang SW, Ngo HH, Guo W, Nghiem LD, Banu JR, Jeon BH, Nguyen DD (2019) Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content. Waste Manag 85:214–221. https://doi.org/10.1016/j.wasman.2018.12.026

    Article  CAS  PubMed  Google Scholar 

  27. Choi JM, Han SK, Lee CY (2018) Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. Bioresour Technol 259:207–213. https://doi.org/10.1016/j.biortech.2018.02.123

    Article  CAS  PubMed  Google Scholar 

  28. Kepp U, Machenbach I, Weisz N, Solheim OE (2000) Enhanced stabilisation of sewage sludge through thermal hydrolysis - three years of experience with full scale plant. Water Sci Technol 42(9):89–96. https://doi.org/10.2166/wst.2000.0178

    Article  CAS  Google Scholar 

  29. Sapkaite I, Barrado E, Fdz-Polanco F, Pérez-Elvira SI (2017) Optimization of a thermal hydrolysis process for sludge pre-treatment. J Environ Manag 192:25–30. https://doi.org/10.1016/j.jenvman.2017.01.043

    Article  CAS  Google Scholar 

  30. Abe N, Tang YQ, Iwamura M, Morimura S, Kida K (2013) Pretreatment followed by anaerobic digestion of secondary sludge for reduction of sewage sludge volume. Water Sci Technol 67(11):2527–2533. https://doi.org/10.2166/wst.2013.154

    Article  CAS  PubMed  Google Scholar 

  31. Tyagi VK, Lo SL (2011) Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review. Rev Environ Sci Biotechnol 10(3):215–242. https://doi.org/10.1007/s11157-011-9244-9

    Article  CAS  Google Scholar 

  32. Tulun Ş, Bilgin M (2019) Enhancement of anaerobic digestion of waste activated sludge by chemical pretreatment. J Fuel 254:115671. https://doi.org/10.1016/j.fuel.2019.115671

    Article  CAS  Google Scholar 

  33. Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183(1):1–15. https://doi.org/10.1016/j.jhazmat.2010.06.129

    Article  CAS  PubMed  Google Scholar 

  34. Liu J, Dong L, Dai Q, Liu Y, Tang X, Liu J, Xiao B (2019a) Enhanced anaerobic digestion of sewage sludge by thermal or alkaline-thermal pretreatments: influence of hydraulic retention time reduction. Int J Hydrog Energy 45(4):2655–2667. https://doi.org/10.1016/j.ijhydene.2019.11.198

    Article  CAS  Google Scholar 

  35. Liu X, Xu Q, Wang D, Yang Q, Wu Y, Li Y, Fu Q, Yang F, Liu Y, Ni BJ, Wang Q, Li X (2019b) Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: process optimization and effects on anaerobic digestion and polyacrylamide degradation. Bioresour Technol 281:158–167. https://doi.org/10.1016/j.biortech.2019.02.095

    Article  CAS  PubMed  Google Scholar 

  36. Karagöz S, Bhaskar T, Muto A, Sakata Y (2006) Hydrothermal upgrading of biomass: effect of K2CO3 concentration and biomass/water ratio on products distribution. Bioresour Technol 97(1):90–98. https://doi.org/10.1016/j.biortech.2005.02.051

    Article  CAS  PubMed  Google Scholar 

  37. Chang CC, Chen CP, Yang CS, Chen YH, Huang M, Chang CY, Shie JL, Yuan MH, Chen YH, Ho C, Li K, Yang MT (2016) Conversion of waste bamboo chopsticks to bio-oil via catalytic hydrothermal liquefaction using K2CO3. Sustain Environ Res 26(6):262–267. https://doi.org/10.1016/j.serj.2016.08.002

    Article  CAS  Google Scholar 

  38. Sun R, Xing D, Jia J, Zhou A, Zhang L, Ren N (2014) Methane production and microbial community structure for alkaline pretreated waste activated sludge. Bioresour Technol 169:496–501. https://doi.org/10.1016/j.biortech.2014.07.032

    Article  CAS  PubMed  Google Scholar 

  39. Li W, Guo J, Cheng H, Wang W, Dong R (2017) Two-phase anaerobic digestion of municipal solid wastes enhanced by hydrothermal pretreatment: viability, performance and microbial community evaluation. Appl Energy 189:613–622. https://doi.org/10.1016/j.apenergy.2016.12.101

    Article  CAS  Google Scholar 

  40. Ruiz HA, Conrad M, Sun SN, Sanchez A, Rocha GJM, Romaní A, Castro E, Torres A, Rodríguez-Jasso RM, Andrade LP, Smirnova I, Sun RC, Meyer AS (2020) Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept. Bioresour Technol 299:122685. https://doi.org/10.1016/j.biortech.2019.122685

    Article  CAS  PubMed  Google Scholar 

  41. Boulanger A, Pinet E, Bouix M, Bouchez T, Mansour AA (2012) Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential. Waste Manag 32(12):2258–2265. https://doi.org/10.1016/j.wasman.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  42. American Public Health Association (APHA) (1998) Standard methods for the examination of water and wastewater, Washington DC

  43. Benabdallah El-Hadj T, Dosta J, Márquez-Serrano R, Mata-Álvarez J (2007) Effect of ultrasound pretreatment in mesophilic and thermophilic anaerobic digestion with emphasis on naphthalene and pyrene removal. Water Res 41(1):87–94. https://doi.org/10.1016/j.watres.2006.08.002

    Article  CAS  PubMed  Google Scholar 

  44. Riau V, De la Rubia MA, Pérez M (2015) Upgrading the temperature-phased anaerobic digestion of waste activated sludge by ultrasonic pretreatment. Chem Eng J 259:672–681. https://doi.org/10.1016/j.cej.2014.08.032

    Article  CAS  Google Scholar 

  45. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Keley ST, Knoghts D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allow analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc London, Ser B 360:1935–1943. https://doi.org/10.1098/rstb.2005.1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSanits TZ, Human MC, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504. https://doi.org/10.1101/gr.112730.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Urrea JL, García M, Collado S, Oulego P, Díaz M (2018) Sludge hydrothermal treatments. Oxidising atmosphere effects on biopolymers and physical properties. J Environ Manage 206:284–290. https://doi.org/10.1016/j.jenvman.2017.10.043

    Article  CAS  PubMed  Google Scholar 

  49. Eskicioglu C, Kennedy KJ, Droste RL (2006) Characterization of soluble organic matter of waste activated sludge before and after thermal pretreatment. Water Res 40(20):3725–3736. https://doi.org/10.1016/j.watres.2006.08.017

    Article  CAS  PubMed  Google Scholar 

  50. Qiao W, Yan X, Ye J, Sun Y, Wang W, Zhang Z (2011) Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew Energy 36(12):3313–3318. https://doi.org/10.1016/j.renene.2011.05.002

    Article  CAS  Google Scholar 

  51. Vlyssides AG, Karlis PK (2004) Thermal-alkaline solubilization of waste activated sludge as a pre-treatment stage for anaerobic digestion. Bioresour Technol 91(2):201–206. https://doi.org/10.1016/S0960-8524(03)00176-7

    Article  CAS  PubMed  Google Scholar 

  52. Angelidaki I, Treu L, Tsapekos P, Luo G, Campanaro S, Wenzel H, Kougias PG (2018) Biogas upgrading and utilization: current status and perspectives. Biotechnol Adv 36(2):452–466. https://doi.org/10.1016/j.biotechadv.2018.01.011

    Article  CAS  PubMed  Google Scholar 

  53. Mouneimne AH, Carrère H, Bernet N, Delgenès JP (2003) Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresour Technol 90(1):89–94. https://doi.org/10.1016/S0960-8524(03)00091-9

    Article  CAS  PubMed  Google Scholar 

  54. Li H, Li C, Liu W, Zou S (2012) Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresour Technol 123:189–194. https://doi.org/10.1016/j.biortech.2012.08.017

    Article  CAS  PubMed  Google Scholar 

  55. Li N, He J, Yan H, Chen S, Dai X (2017) Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge. Bioresour Technol 241:95–102. https://doi.org/10.1016/j.biortech.2017.05.094

    Article  CAS  PubMed  Google Scholar 

  56. Kim J, Kim W, Lee C (2013) Absolute dominance of hydrogenotrophic methanogens in full-scale anaerobic sewage sludge digesters. J Environ Sci 25(11):2272–2280. https://doi.org/10.1016/S1001-0742(12)60299-X

    Article  CAS  Google Scholar 

  57. Conklin A, Stensel HD, Ferguson J (2006) Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 78:486–496. https://doi.org/10.2175/106143006X95393

    Article  CAS  PubMed  Google Scholar 

  58. Nobu M, Narihiro T, Kuroda K, Mei R, Liu WT (2016) Chasing the elusive Euryarchaeota class WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. ISME J 10:2478–2487. https://doi.org/10.1038/ismej.2016.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ma H, Chen X, Liu H, Liu H, Bo F (2016) Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: alkaline or neutral pH? Waste Manag 48:397–403. https://doi.org/10.1016/j.wasman.2015.11.029

    Article  CAS  PubMed  Google Scholar 

  60. Vrieze JD, Hennebel T, Boon N, Verstraete W (2012) Methanosarcina: the rediscovered methanogen for heavy duty biomethanation. Bioresour Technol 112:1–9. https://doi.org/10.1016/j.biortech.2012.02.079

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would also like to thank Dihua Wastewater Treatment Plant (Taipei, Taiwan) for providing the sludge used in the experiments.

Funding

This research was supported by the Ministry of Science and Technology, Taiwan, under grants MOST 107-2218-E-197-003 and National Taiwan University from Excellence Research Program—Core Consortiums under Higher Education Sprout Project, Ministry of Education, Taiwan (NTUCCP-109L891203). This article was also subsidized by National Taiwan University under the Excellence Improvement Program for Doctoral Students. We would like to thank the Ministry of Science and Technology, Taiwan, for providing V. T. Pham the Ph.D. scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Ping Yu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 4470 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, V.T., Wu, PH., Guan, CY. et al. Biogas Production and Microbial Communities in the Anaerobic Digestion of Sewage Sludge Under Hydrothermal Pretreatment with Air and a Catalyst. Bioenerg. Res. 14, 828–843 (2021). https://doi.org/10.1007/s12155-020-10199-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10199-4

Keywords

Navigation