Skip to main content

Advertisement

Log in

Brachypodium Cell Wall Mutant with Enhanced Saccharification Potential Despite Increased Lignin Content

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Plant lignocellulosic biomass, mostly composed of cell walls, is one of the largest, mostly untapped, reserves of renewable carbon feedstock on the planet. Energy-rich polysaccharide polymers of plant cell walls can be broken down to produce fermentable sugars used to produce bioethanol. However, the complex structure of plant cell walls, and in particular, the presence of lignin, makes them recalcitrant to enzymatic degradation. Reducing this recalcitrance represents a major technological challenge. Brachypodium distachyon is an excellent model to identify parameters underlying biomass quality of energy grasses. In this work, we identified a mutant line spa1 with a so far undescribed phenotype combining brittleness with increased elasticity of the internodes. Mutant cell walls contain less crystalline cellulose and changes in hemicellulose and lignin quality and quantity. Using a dedicated reactor to follow in real-time, the evolution of straw particle size and sugar release during enzymatic digestion, we show that, despite the increased lignin content, the spa1 mutant has a dramatic reduced recalcitrance to saccharification compared to the WT. These observations demonstrate that other parameters besides lignin content are relevant for the improvement of biomass recalcitrance in energy grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Foston M, Ragauskas AJ (2012) Biomass characterization: recent progress in understanding biomass recalcitrance. Ind Biotechnol 8:191–208

    Article  CAS  Google Scholar 

  2. Mosier N, Wyman C, Dale B, Elander R, Lee YY et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  3. Weng J-K, Li X, Bonawitz ND, Chapple C (2008) Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr Opin Biotechnol 19:166–172

    Article  CAS  PubMed  Google Scholar 

  4. Dalmais M, Antelme S, Ho-Yue-Kuang S, Wang Y, Darracq O et al (2013) A TILLING platform for functional genomics. PLoS ONE 8:e65503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Serra J (1982) Image analysis and mathematical morphology. Academic, London

    Google Scholar 

  6. Devaux M-F, Bouchet B, Legland D, Guillon F, Lahaye M (2008) Macro-vision and grey level granulometry for quantification of tomato pericarp structure. Postharvest Biol Technol 47:199–209

    Article  Google Scholar 

  7. Updegraff DM (1969) Semi-micro determination of cellulose in biological materials. Anal Biochem 32:420–424

    Article  CAS  PubMed  Google Scholar 

  8. Dence CW (1992) The determination of lignin. Springer, Heidelberg

    Google Scholar 

  9. Lapierre C (2010) Determining lignin structure by chemical degradations. CRC Press/Taylor & Francis Group, Boca Raton

    Google Scholar 

  10. Bouvier-d’Yvoire M, Bouchabke-Coussa O, Voorend W, Antelme S, Cezard L et al (2013) Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon. Plant J 73:496–508

    Article  PubMed  Google Scholar 

  11. Ishii T (1997) Structure and functions of feroylated polysaccharides. Plant Sci 127:111–127

    Article  CAS  Google Scholar 

  12. Ralph J (2010) Hydroxycinnamates in lignification. Phytochem Rev 9:65–83

    Article  CAS  Google Scholar 

  13. Jacquet G, Pollet B, Lapierre C, Mhamdi F, Rolando C (1995) New ether-linked ferulic acid-coniferyl alcohol dimers identified in grass straws. J Agric Food Chem 43:2746–2751

    Article  CAS  Google Scholar 

  14. Petrik DL, Karlen SD, Cass CL, Padmakshan D, Lu F et al (2014) p-Coumaroyl-CoA:monolignol transferase (PMT) acts specifically in the lignin biosynthetic pathway in Brachypodium distachyon. Plant J 77:713–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Brown JA, Fry SC (1993) The preparation and susceptibility to hydrolysis of novel O-galacturonoyl derivatives of carbohydrates. Carbohydr Res 240:95–106

    Article  CAS  PubMed  Google Scholar 

  16. Saulnier L, Vigouroux J, Thibault JF (1995) Isolation and partial characterization of feruloylated oligosaccharides from maize bran. Carbohydr Res 272:241–253

    Article  CAS  PubMed  Google Scholar 

  17. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  18. Dagel DJ, Liu YS, Zhong L, Luo Y, Himmel ME et al (2011) In situ imaging of single carbohydrate-binding modules on cellulose microfibrils. J Phys Chem B 115:635–641

    Article  CAS  PubMed  Google Scholar 

  19. Demura T, Ye ZH (2010) Regulation of plant biomass production. Curr Opin Plant Biol 13:299–304

    Article  PubMed  Google Scholar 

  20. Terashima N, Fukushima K, He L-F, Takabe K (1993) Comprehensive model of the lignified plant cell wall. In: Jung HG, Buxton RD, Hatfield RD, Ralph J (eds) Forage cell wall structure and digestibility. ASA-CSSA-SSSA, Madison, pp 247–270

    Google Scholar 

  21. Timell TE (1986) Compression wood in gymnosperms. Springer, Berlin

    Book  Google Scholar 

  22. Lange BM, Lapierre C, Sandermann H Jr (1995) Elicitor-induced spruce stress lignin (structural similarity to early developmental lignins). Plant Physiol 108:1277–1287

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Bartley LE, Peck ML, Kim SR, Ebert B, Manisseri C et al (2013) Overexpression of a BAHD acyltransferase, OsAt10, alters rice cell wall hydroxycinnamic acid content and saccharification. Plant Physiol 161:1615–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  PubMed  Google Scholar 

  25. Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  CAS  PubMed  Google Scholar 

  26. Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158:431–436

    Article  CAS  Google Scholar 

  27. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S et al (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  PubMed  Google Scholar 

  28. Murozuka E, Nord-Larsen PH, Møller IS, Jahn TP, Schjoerring JK (2011) Identification of Brachypodium mutants defective in silicon uptake. First European Brachypodium Workshop, Versailles

    Google Scholar 

  29. Yamamoto T, Nakamura A, Iwai H, Ishii T, Ma JF et al (2012) Effect of silicon deficiency on secondary cell wall synthesis in rice leaf. J Plant Res 125:771–779

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Weng JK, Chapple C (2008) Improvement of biomass through lignin modification. Plant J 54:569–581

    Article  CAS  PubMed  Google Scholar 

  31. Yang B, Wyman CE (2007) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod Bioref 2:26–40

    Article  CAS  Google Scholar 

  32. Zhang B, Zhou Y (2011) Rice brittleness mutants: a way to open the ‘black box’ of monocot cell wall biosynthesis. J Integr Plant Biol 53:136–142

    Article  CAS  PubMed  Google Scholar 

  33. Yang J, Ordiz MI, Semenyuk EG, Kelly B, Beachy RN (2012) A safe and effective plant gene switch system for tissue-specific induction of gene expression in Arabidopsis thaliana and Brassica juncea. Transgenic Res 21:879–883

    Article  CAS  PubMed  Google Scholar 

  34. Hoebler C, Barry J-L, David A, Delort-Laval J (1989) Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography. J Agric Food Chem 37:360–365

    Article  CAS  Google Scholar 

  35. Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299

    Article  CAS  Google Scholar 

  36. Tollier M-T, Robin J-P (1979) Adaptation de la méthode à l’orcinol sulfurique au dosage automatique des glucides neutres totaux: conditions d’application aux extraits d’origine végétale. Ann Technol Agric 28:1–15

    CAS  Google Scholar 

  37. Thibault J-F (1979) Automatisation du dosage des substances pectiques par la méthode au meta-hydroxydiphenyl. Lebensm-Wiss Technol 12:247–251

    CAS  Google Scholar 

  38. Scott TA, Melvin EH (1953) Determination of dextran with anthrone. Anal Chem 25:1656–1661

    Article  CAS  Google Scholar 

  39. VanderHart DL, Atalla RH (1984) Studies of microstructure in native celluloses using solid-state 13C NMR. Macromolecules 17:1465–1472

    Article  CAS  Google Scholar 

  40. Newman RH (1997) Crystalline forms of cellulose in the silver tree fern Cyathea dealbata. Cellulose 4:269–279

    Article  CAS  Google Scholar 

  41. Kolodziejski W, Frye JS, Maciel GE (1982) Carbon-13 nuclear magnetic resonance spectrometry with cross polarization and magic-angle spinning for analysis of lodgepole pine wood. Anal Chem 54:1419–1424

    Article  CAS  Google Scholar 

  42. Larsson PT, Wickholm K, Iversen T (1997) A CP/MAS 13C NMR investigation of molecular ordering in cellulose. Carbohydr Res 302:19–25

    Article  CAS  Google Scholar 

  43. Wickholm K, Larsson PT, Iversen T (1998) Assignment of noncrystalline cellulose forms in cellulose-I by CP/MAS C-13 NMR spectroscopy. Carbohydr Res 312:123–129

    Article  CAS  Google Scholar 

  44. Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351–355

    Article  CAS  Google Scholar 

  45. Wakelin JH, Virgin HS, Crystal E (1959) Development and comparison of two X-ray methods for determining the crystallinity of cotton cellulose. J Appl Phys 30:1654–1662

    Article  CAS  Google Scholar 

  46. Lopez-Rubio A, Flanagan BM, Gilbert EP, Gidley MJ (2008) A novel approach for calculating starch crystallinity and its correlation with double helix content: a combined XRD and NMR study. Biopolymers 89:761–768

    Article  CAS  PubMed  Google Scholar 

  47. Thiéry JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie éléctronique. J Microsc 6:987–1018

    Google Scholar 

  48. Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB et al (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329

    Article  CAS  PubMed  Google Scholar 

  49. Devaux MF, Sire A, Papineau P (2009) Macrovision et analyse granulométrique en niveaux de gris pour l’analyse histologique de tissus végétaux. in Le cahier des techniques de l’INRA. INRA

Download references

Acknowledgments

This work was founded by the EU Framework program 7, project 211982 (Renewall) and the KBBE (2008) trilateral project “CellWall.” We thank Jacqueline Vigouroux for her help for sugar analysis, Sylvie Durand and Paul Robert for their assistance for FT-IR spectroscopy analysis and Olivier Darracq and Sébastien Antelme for taking care of the Brachypodium plants in the greenhouse. We also thank the Plateform “Chimie de Végétal (PFCV)” of the IJPB. Nuclear magnetic resonance and electron transmission microscopy were performed at the IBISA/BioGenOuest Biopolymers Structural Biology platform (BIBS, UR 1268 BIA, INRA Angers-Nantes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine Gonneau.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 74 kb)

Supplementary Table 2

(DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timpano, H., Sibout, R., Devaux, MF. et al. Brachypodium Cell Wall Mutant with Enhanced Saccharification Potential Despite Increased Lignin Content. Bioenerg. Res. 8, 53–67 (2015). https://doi.org/10.1007/s12155-014-9501-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9501-1

Keywords

Navigation