Skip to main content
Log in

Biodegradation of Lignocellulose by White-Rot Fungi: Structural Characterization of Water-Soluble Hemicelluloses

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In the biological pretreatment process, white-rot fungi are mostly used to degrade lignin and carbohydrates in lignocellulosic biomass. In this study, water-soluble hemicelluloses were recovered from birch wood (Betula alnoides) decayed by white-rot fungi (Ganoderma lucidum C7016) for different durations up to 16 weeks. Accordingly, the dimethyl sulfoxide (DMSO)-soluble hemicelluloses were isolated from the untreated birch wood as a comparison. Results showed that the fungal-degraded polysaccharides were acidic hemicelluloses having a high content of uronic acids ranging from 20.6 to 22.5 %. Gel permeation chromatography analysis demonstrated that the recovered water-soluble hemicelluloses had a lower average molecular weight (M w, 15,990–27,560 g mol−1) than that of the DMSO-soluble hemicelluloses (M w , 33,960 g mol−1). Fourier transform infrared spectroscopy, scanning electron microscopy, one- and two-dimensional nuclear magnetic resonance spectroscopy also revealed significantly changes between those of fungal degraded and DMSO-soluble hemicelluloses. It was proposed that the hemicelluloses with low molecular weights were easily removed from wood by fungal degradation. This research revealed the changes of hemicelluloses in fungal degradation in the natural environment, which may enable the exploration of novel methods in bioconversion of lignocellulosic biomass for the production of biofuels and biopolymers, in addition to the development of new and better ways to protect wood from biodegradation by microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ragauskas AJ, Nagy M, Kim DH, Eckert CA, Hallett JP, Liotta CL (2006) From wood to fuels: integrating biofuels and pulp production. Ind Biotechnol 2:55–65

    Article  CAS  Google Scholar 

  2. Korte HE, Offermann W, Puls J (1991) Characterization and preparation of substituted xylo-oligosaccharides from steamed birchwood. Holzforschung 45:419–424

    Article  CAS  Google Scholar 

  3. Teleman A, Lundqvist J, Tjerneld F, Stålbrand H, Dahlman O (2000) Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohydr Res 329:807–815

    Article  PubMed  CAS  Google Scholar 

  4. Teleman A, Tenkanen M, Jacobs A, Dahlman O (2002) Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr Res 337:373–377

    Article  PubMed  CAS  Google Scholar 

  5. Teleman A, Nordstrom M, Tenkanen M, Jacobs A, Dahlman O (2003) Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydr Res 338:525–534

    Article  PubMed  CAS  Google Scholar 

  6. Ebringerová A (2005) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12

    Article  Google Scholar 

  7. Pérez J, Muñoz-Dorado J, de la Rubia T, Martínez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  Google Scholar 

  8. Tian XF, Fang Z, Guo F (2012) Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels Bioprod Bioref 6:335–350

    Article  Google Scholar 

  9. Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447–1457

    Article  PubMed  CAS  Google Scholar 

  10. de Menezes CR, Silva ÍS, Pavarina ÉC, Guímaro Dias EF, Guímaro Dias F, Grossman MJ, Durrant LR (2009) Production of xylooligosaccharides from enzymatic hydrolysis of xylan by the white-rot fungi Pleurotus. Int Biodeterior Biodegrad 63:673–678

    Article  Google Scholar 

  11. Sánchez C (2009) Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv 27:185–194

    Article  PubMed  Google Scholar 

  12. Goyal A, Ghosh B, Eveleigh D (1991) Characteristics of fungal cellulases. Bioresour Technol 36:37–50

    Article  CAS  Google Scholar 

  13. Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtaś-Wasilewska M, Cho NS, Hofrichter M, Rogalski J (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27:175–185

    Article  PubMed  CAS  Google Scholar 

  14. Isroi RM, Syamsiah S, Niklasson C, Cahyanto MN, Ludquist K, Taherzadeh MJ (2011) Biological pretreatment of lignocelluloses with white-rot fungi and its applications: a review. Bioresources 6:1930–2126

    Google Scholar 

  15. Jiao J, Gai QY, Fu YJ, Zu YG, Luo M, Wang W, Zhao CJ, Gu CB, Li J (2012) Application of white-rot fungi treated Fructus forsythiae shell residue as a low-cost biosorbent to enrich forsythiaside and phillygenin. Chem Eng Sci 74:244–255

    Article  CAS  Google Scholar 

  16. Green F, Larsen MJ, Winandy JE, Highley TL (1991) Role of oxalic acid in incipient brown-rot decay. Mater Organismen 26:191–213

    CAS  Google Scholar 

  17. Hoch G (2007) Cell wall hemicelluloses as mobile carbon stores in non-reproductive plant tissues. Funct Ecol 21:823–834

    Article  Google Scholar 

  18. D’Souza TM, Merritt CS, Reddy CA (1999) Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl Environ Microbiol 65:5307–5313

    PubMed  Google Scholar 

  19. Jeffries TW (1994) Biodegradation of lignin and hemicelluloses. In: Ratledge C (ed) Biochemistry of microbial degradation. Kluwer, Dordrecht, pp 233–277

  20. Prozil SO, Costa EV, Evtuguin DV, Cruz Lopes LP, Domingues MRM (2012) Structural characterization of polysaccharides isolated from grape stalks of Vitis vinifera L. Carbohydr Res 356:252–259

    Article  PubMed  CAS  Google Scholar 

  21. Chen S, Zhang X, Singh D, Yu H, Yang X (2010) Biological pretreatment of lignocellulosics: potential, progress and challenges. Biofuels 1:177–199

    Article  CAS  Google Scholar 

  22. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP), NREL/TP-510-42618

  23. Xiao LP, Shi ZJ, Xu F, Sun RC (2013) Characterization of lignins isolated with alkaline ethanol from the hydrothermal pretreated Tamarix ramosissima. Bioenerg Res. doi:10.1007/s12155-012-9266-3

  24. Rowell RM, Pettersen R, Han JS, Rowell JS, Tshabalala MA (2005) Cell wall chemistry. In: Rowell RM (ed) Handbook of wood chemistry and wood composites. CRC, Boca Raton, pp 35–74

    Google Scholar 

  25. Borrega M, Nieminen K, Sixta H (2011) Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures. Bioresour Technol 102:10724–10732

    Article  PubMed  CAS  Google Scholar 

  26. Curling C, Clausen CA, Winandy JE (2002) Relationships between mechanical properties, weight loss, and chemical composition of wood during incipient brown-rot decay. Forest Prod J 52:34–39

    CAS  Google Scholar 

  27. Highley TL, Dashek WV (1998) Biotechnology in the study of brown-and whiterot decay. In: Bruce A, Palfreyman PW (eds) Forest products biotechnology. Taylor & Francis, London, pp 15–36

    Google Scholar 

  28. Fazilah A, Mohd Azemi MN, Karim AA, Norakma MN (2009) Physicochemical properties of hydrothermally treated hemicellulose from oil palm frond. J Agric Food Chem 57:1527–1531

    Article  PubMed  CAS  Google Scholar 

  29. Marchessault R, Liang C (1962) The infrared spectra of crystalline polysaccharides. VIII. Xylans. J Polym Sci 59:357–378

    Article  CAS  Google Scholar 

  30. Kacuráková M, Capek P, Sasinková V, Wellner N, Ebringerová A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Article  Google Scholar 

  31. Wellner N, Ebringerová A, Hromádková Z, Wilson R, Belton P (1999) Characterisation of xylan-type polysaccharides and associated cell wall components by FT-IR and FT-Raman spectroscopies. Food Hydrocolloid 13:35–41

    Article  Google Scholar 

  32. Kačuráková M, Ebringerová A, Hirsch J, Hromádková Z (1994) Infrared study of arabinoxylans. J Sci Food Agric 66:423–427

    Article  Google Scholar 

  33. Šimkovic I, Gedeon O, Uhliariková I, Mendichi R, Kirschnerová S (2011) Positively and negatively charged xylan films. Carbohydr Polym 83:769–775

    Article  Google Scholar 

  34. Šimkovic I, Gedeon O, Uhliariková I, Mendichi R, Kirschnerová S (2011) Xylan sulphate films. Carbohydr Polym 86:214–218

    Article  Google Scholar 

  35. Haimer E, Wendland M, Potthast A, Henniges U, Rosenau T, Liebner F (2010) Controlled precipitation and purification of hemicellulose from DMSO and DMSO/water mixtures by carbon dioxide as anti-solvent. J Supercrit Fluids 53:121–130

    Article  CAS  Google Scholar 

  36. Peng H, Wang N, Hu Z, Yu Z, Liu Y, Zhang J, Ruan R (2011) Physicochemical characterization of hemicelluloses from bamboo (Phyllostachys pubescens Mazel) stem. Ind Crops Prod 37:41–50

    Article  Google Scholar 

  37. Vignon MR, Gey C (1998) Isolation, 1H and 13C NMR studies of (4-O-methyl-D-glucurono)-D-xylans from luffa fruit fibres, jute bast fibres and mucilage of quince tree seeds. Carbohydr Res 307:107–111

    Article  CAS  Google Scholar 

  38. Ebringerová A, Alföldi J, Hromádková Z, Pavlov GM, Harding SE (2000) Water-soluble p-carboxybenzylated beechwood 4-O-methylglucuronoxylan: structural features and properties. Carbohydr Polym 42:123–131

    Article  Google Scholar 

  39. Cozzolino R, Malvagna P, Spina E, Giori A, Fuzzati N, Anelli A, Garozzo D, Impallomeni G (2006) Structural analysis of the polysaccharides from Echinacea angustifolia radix. Carbohydr Polym 65:263–272

    Article  CAS  Google Scholar 

  40. Xiao LP, Xu F, Sun RC (2011) Fractional isolation and structural characterization of hemicellulosic polymers from Caragana sinica. E-Polymers 84:1–16

    Google Scholar 

  41. Kim H, Ralph J (2010) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6/pyridine-d 5. Org Biomol Chem 8:576–591

    Article  PubMed  CAS  Google Scholar 

  42. Gullón P, González-Muñoz MJ, van Gool MP, Schols HA, Hirsch J, Ebringerová A, Parajó JC (2011) Structural features and properties of soluble products derived from Eucalyptus globulus hemicelluloses. Food Chem 127:1798–1807

    Article  Google Scholar 

  43. Karaaslan MA, Tshabalala MA, Yelle DJ, Buschle-Diller G (2011) Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr Polym 86:192–201

    Article  CAS  Google Scholar 

  44. Brennan M, McLean J, Altaner C, Ralph J, Harris P (2012) Cellulose microfibril angles and cell-wall polymers in different wood types of Pinus radiata. Cellulose 19:1385–1404

    Article  CAS  Google Scholar 

  45. Zhang XM, Meng LY, Xu F, Sun RC (2011) Pretreatment of partially delignified hybrid poplar for biofuels production: characterization of organosolv hemicelluloses. Ind Crops Prod 33:310–316

    Article  CAS  Google Scholar 

  46. Peng P, Peng F, Bian J, Xu F, Sun RC (2011) Studies on the starch and hemicelluloses fractionated by graded ethanol precipitation from bamboo Phyllostachys bambusoides f. shouzhu Yi. J Agric Food Chem 59:2680–2688

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support from the Specific Programs in Graduate Science and Technology Innovation of Beijing Forestry University (number BLYJ201314), National Natural Science Foundation of China (30930073), Major State Basic Research Projects of China (973-2010CB732204), and State Forestry Administration (201204803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Run-Cang Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 771 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, LP., Shi, ZJ., Bai, YY. et al. Biodegradation of Lignocellulose by White-Rot Fungi: Structural Characterization of Water-Soluble Hemicelluloses. Bioenerg. Res. 6, 1154–1164 (2013). https://doi.org/10.1007/s12155-013-9302-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-013-9302-y

Keywords

Navigation