Skip to main content

Advertisement

Log in

Artificial intelligence for nuclear medicine in oncology

  • Invited Review Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

As in all other medical fields, artificial intelligence (AI) is increasingly being used in nuclear medicine for oncology. There are many articles that discuss AI from the viewpoint of nuclear medicine, but few focus on nuclear medicine from the viewpoint of AI. Nuclear medicine images are characterized by their low spatial resolution and high quantitativeness. It is noted that AI has been used since before the emergence of deep learning. AI can be divided into three categories by its purpose: (1) assisted interpretation, i.e., computer-aided detection (CADe) or computer-aided diagnosis (CADx). (2) Additional insight, i.e., AI provides information beyond the radiologist's eye, such as predicting genes and prognosis from images. It is also related to the field called radiomics/radiogenomics. (3) Augmented image, i.e., image generation tasks. To apply AI to practical use, harmonization between facilities and the possibility of black box explanations need to be resolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th international conference on neural information processing systems, vol 1. Curran Associates Inc., Lake Tahoe, pp 1097–1105

  2. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.

    CAS  PubMed  Google Scholar 

  3. Ueda D, Yamamoto A, Shimazaki A, Walston SL, Matsumoto T, Izumi N, Tsukioka T, Komatsu H, Inoue H, Kabata D, et al. Artificial intelligence-supported lung cancer detection by multi-institutional readers with multi-vendor chest radiographs: a retrospective clinical validation study. BMC Cancer. 2021;21(1):1120.

    PubMed  PubMed Central  Google Scholar 

  4. Niikura R, Aoki T, Shichijo S, Yamada A, Kawahara T, Kato Y, Hirata Y, Hayakawa Y, Suzuki N, Ochi M, HirasawaT Tada T, Kawai T, Koike K. Artificial intelligence versus expert endoscopists for diagnosis of gastric cancer inpatients who underwent upper gastrointestinal endoscopy. Endoscopy. 2021. https://doi.org/10.1055/a-1660-6500. Epub ahead of print. PMID: 34607377

    Article  PubMed  Google Scholar 

  5. O’Byrne C, Abbas A, Korot E, Keane PA. Automated deep learning in ophthalmology: AI that can build AI. Curr Opin Ophthalmol. 2021;32(5):406–12.

    PubMed  Google Scholar 

  6. Ni P, Huang N, Nie F, Zhang J, Zhang Z, Wu B, Bai L, Liu W, Xiao CL, Luo F, et al. Genome-wide detection of cytosine methylations in plant from nanopore data using deep learning. Nat Commun. 2021;12(1):5976.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Xu W, Gao Y, Wang Y, Guan J. Protein-protein interaction prediction based on ordinal regression and recurrent convolutional neural networks. BMC Bioinform. 2021;22(Suppl 6):485.

    Google Scholar 

  8. Sakamoto T, Goto T, Fujiogi M, Kawarai Lefor A. Machine learning in gastrointestinal surgery. Surg Today. 2021. https://doi.org/10.1007/s00595-021-02380-9. Epub ahead of print. PMID: 34559310.

    Article  PubMed  Google Scholar 

  9. Toosi A, Bottino AG, Saboury B, Siegel E, Rahmim A. A brief history of AI: how to prevent another winter (a critical review). PET Clin. 2021;16(4):449–69.

    PubMed  Google Scholar 

  10. Suzuki K, Okamura Y, Hara T, Terakawa T, Furukawa J, Harada K, Hinata N, Fujisawa M. Prognostic impact of bone metastatic volume beyond vertebrae and pelvis in patients with metastatic hormone-sensitive prostate cancer. Int J Clin Oncol. 2021;26(8):1533–40.

    CAS  PubMed  Google Scholar 

  11. Uemura K, Miyoshi Y, Kawahara T, Ryosuke J, Yamashita D, Yoneyama S, Yokomizo Y, Kobayashi K, Kishida T, Yao M, et al. Prognostic value of an automated bone scan index for men with metastatic castration-resistant prostate cancer treated with cabazitaxel. BMC Cancer. 2018;18(1):501.

    PubMed  PubMed Central  Google Scholar 

  12. Nakajima K, Edenbrandt L, Mizokami A. Bone scan index: a new biomarker of bone metastasis in patients with prostate cancer. Int J Urol. 2017;24(9):668–73.

    PubMed  Google Scholar 

  13. Idota A, Sawaki M, Yoshimura A, Hattori M, Inaba Y, Oze I, Kikumori T, Kodera Y, Iwata H. Bone Scan Index predicts skeletal-related events in patients with metastatic breast cancer. Springerplus. 2016;5(1):1095.

    PubMed  PubMed Central  Google Scholar 

  14. Miyoshi Y, Yoneyama S, Kawahara T, Hattori Y, Teranishi J, Kondo K, Moriyama M, Takebayashi S, Yokomizo Y, Yao M, et al. Prognostic value of the bone scan index using a computer-aided diagnosis system for bone scans in hormone-naive prostate cancer patients with bone metastases. BMC Cancer. 2016;16:128.

    PubMed  PubMed Central  Google Scholar 

  15. Uemura K, Miyoshi Y, Kawahara T, Yoneyama S, Hattori Y, Teranishi J, Kondo K, Moriyama M, Takebayashi S, Yokomizo Y, et al. Prognostic value of a computer-aided diagnosis system involving bone scans among men treated with docetaxel for metastatic castration-resistant prostate cancer. BMC Cancer. 2016;16:109.

    PubMed  PubMed Central  Google Scholar 

  16. Koizumi M, Motegi K, Koyama M, Ishiyama M, Togawa T, Makino T, Arisaka Y, Terauchi T. Diagnostic performance of a computer-assisted diagnostic system: sensitivity of BONENAVI for bone scintigraphy in patients with disseminated skeletal metastasis is not so high. Ann Nucl Med. 2020;34(3):200–11.

    PubMed  PubMed Central  Google Scholar 

  17. Yamamoto Y, Mitsunaga S, Horikawa A, Hino A, Kurihara H. Quantitative bone scan imaging using BSI and BUV: an approach to evaluate ARONJ early. Ann Nucl Med. 2020;34(1):74–9.

    PubMed  Google Scholar 

  18. Watanabe S, Nakajima K, Mizokami A, Yaegashi H, Noguchi N, Kawashiri S, Inokuchi M, Kinuya S. Bone scan index of the jaw: a new approach for evaluating early-stage anti-resorptive agents-related osteonecrosis. Ann Nucl Med. 2017;31(3):201–10.

    CAS  PubMed  Google Scholar 

  19. Okada Y, Matsushita S, Nakajima Y, Yamaguchi K, Okuda I, Kojima Y, Tsugawa K. Comparison of diagnostic precision for bone metastasis of primary breast cancer between BONENAVI version 1 and BONENAVI version 2. Nucl Med Commun. 2019;40(11):1148–53.

    CAS  PubMed  Google Scholar 

  20. Isoda T, BaBa S, Maruoka Y, Kitamura Y, Tahara K, Sasaki M, Hatakenaka M, Honda H. Influence of the different primary cancers and different types of bone metastasis on the lesion-based artificial neural network value calculated by a computer-aided diagnostic system, BONENAVI, on bone scintigraphy images. Asia Ocean J Nucl Med Biol. 2017;5(1):49–55.

    PubMed  PubMed Central  Google Scholar 

  21. Shintawati R, Achmad A, Higuchi T, Shimada H, Hirasawa H, Arisaka Y, Takahashi A, Nakajima T, Tsushima Y. Evaluation of bone scan index change over time on automated calculation in bone scintigraphy. Ann Nucl Med. 2015;29(10):911–20.

    PubMed  Google Scholar 

  22. Nakajima K, Okuda K, Matsuo S, Kiso K, Kinuya S, Garcia EV. Comparison of phase dyssynchrony analysis using gated myocardial perfusion imaging with four software programs: based on the Japanese Society of Nuclear Medicine working group normal database. J Nucl Cardiol. 2017;24(2):611–21.

    PubMed  Google Scholar 

  23. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36(7):1238–48.

    CAS  PubMed  Google Scholar 

  24. Hirata K, Tamaki N. Quantitative FDG PET assessment for oncology therapy. Cancers (Basel). 2021;13(4):869. https://doi.org/10.3390/cancers13040869. PMID: 33669531; PMCID: PMC7922629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hirata K, Kobayashi K, Wong KP, Manabe O, Surmak A, Tamaki N, Huang SC. A semi-automated technique determining the liver standardized uptake value reference for tumor delineation in FDG PET-CT. PLoS ONE. 2014;9(8):e105682.

    PubMed  PubMed Central  Google Scholar 

  26. Uchiyama Y, Hirata K, Watanabe S, Okamoto S, Shiga T, Okada K, Ito YM, Kudo K. Development and validation of a prediction model based on the organ-based metabolic tumor volume on FDG-PET in patients with differentiated thyroid carcinoma. Ann Nucl Med. 2021;35(11):1223–31.

    CAS  PubMed  Google Scholar 

  27. Shimizu A, Wakabayashi H, Kanamori T, Saito A, Nishikawa K, Daisaki H, Higashiyama S, Kawabe J. Automated measurement of bone scan index from a whole-body bone scintigram. Int J Comput Assist Radiol Surg. 2020;15(3):389–400.

    PubMed  Google Scholar 

  28. Aoki Y, Nakayama M, Nomura K, Tomita Y, Nakajima K, Yamashina M, Okizaki A. The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer. Ann Nucl Med. 2020;34(12):926–31.

    PubMed  Google Scholar 

  29. Shiri I, Arabi H, Sanaat A, Jenabi E, Becker M, Zaidi H. Fully automated gross tumor volume delineation from PET in head and neck cancer using deep learning algorithms. Clin Nucl Med. 2021;46(11):872–83.

    PubMed  Google Scholar 

  30. Fu X, Bi L, Kumar A, Fulham M, Kim J. Multimodal spatial attention module for targeting multimodal PET-CT lung tumor segmentation. IEEE J Biomed Health Inform. 2021;25(9):3507–16.

    PubMed  Google Scholar 

  31. Xue Z, Li P, Zhang L, Lu X, Zhu G, Shen P, Shah SAA, Bennamoun M. Multi-Modal Co-Learning for Liver LesionSegmentation on PET-CT Images. IEEE Trans Med Imaging. 2021;. https://doi.org/10.1109/TMI.2021.3089702. Epub ahead of print. PMID: 34133275.

    Article  PubMed  Google Scholar 

  32. Amarasinghe KC, Lopes J, Beraldo J, Kiss N, Bucknell N, Everitt S, Jackson P, Litchfield C, Denehy L, Blyth BJ, et al. A deep learning model to automate skeletal muscle area measurement on computed tomography images. Front Oncol. 2021;11:580806.

    PubMed  PubMed Central  Google Scholar 

  33. Früh M, Fischer M, Schilling A, Gatidis S, Hepp T. Weakly supervised segmentation of tumor lesions in PET-CT hybrid imaging. J Med Imaging (Bellingham, Wash). 2021;8(5):054003.

    Google Scholar 

  34. Guo R, Hu X, Song H, Xu P, Xu H, Rominger A, Lin X, Menze B, Li B, Shi K. Weakly supervised deep learning for determining the prognostic value of (18)F-FDG PET/CT in extranodal natural killer/T cell lymphoma, nasal type. Eur J Nucl Med Mol Imaging. 2021;48(10):3151–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Eyuboglu S, Angus G, Patel BN, Pareek A, Davidzon G, Long J, Dunnmon J, Lungren MP. Multi-task weak supervision enables anatomically-resolved abnormality detection in whole-body FDG-PET/CT. Nat Commun. 2021;12(1):1880.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirata K, Manabe O, Magota K, Furuya S, Shiga T, Kudo K. A preliminary study to Use SUVmax of FDG PET-CT as an identifier of lesion for artificial intelligence. Front Med. 2021;8:647562.

    Google Scholar 

  37. Kawakami M, Hirata K, Furuya S, Kobayashi K, Sugimori H, Magota K, Katoh C. Development of combination methods for detecting malignant uptakes based on physiological uptake detection using object detection with PET-CT MIP images. Front Med. 2020;7:616746.

    Google Scholar 

  38. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278(2):563–77.

    PubMed  Google Scholar 

  39. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, Cook G. Introduction to radiomics. J Nucl Med. 2020;61(4):488–95.

    CAS  PubMed  Google Scholar 

  40. Bartoli M, Barat M, Dohan A, Gaujoux S, Coriat R, Hoeffel C, Cassinotto C, Chassagnon G, Soyer P. CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol. 2020;38(12):1111–24.

    PubMed  Google Scholar 

  41. Hotta M, Minamimoto R, Gohda Y, Miwa K, Otani K, Kiyomatsu T, Yano H. Prognostic value of (18)F-FDG PET/CT with texture analysis in patients with rectal cancer treated by surgery. Ann Nucl Med. 2021;35(7):843–52.

    CAS  PubMed  Google Scholar 

  42. He J, Wang Q, Zhang Y, Wu H, Zhou Y, Zhao S. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on (18)F-FDG PET/CT and machine learning. Ann Nucl Med. 2021;35(5):617–27.

    CAS  PubMed  Google Scholar 

  43. Yoon H, Ha S, Kwon SJ, Park SY, Kim J, Yoo IR. Prognostic value of tumor metabolic imaging phenotype by FDG PET radiomics in HNSCC. Ann Nucl Med. 2021;35(3):370–7.

    CAS  PubMed  Google Scholar 

  44. Peng L, Hong X, Yuan Q, Lu L, Wang Q, Chen W. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Ann Nucl Med. 2021;35(4):458–68.

    CAS  PubMed  Google Scholar 

  45. Koyasu S, Nishio M, Isoda H, Nakamoto Y, Togashi K. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on (18)F FDG-PET/CT. Ann Nucl Med. 2020;34(1):49–57.

    CAS  PubMed  Google Scholar 

  46. Parvez A, Tau N, Hussey D, Maganti M, Metser U. (18)F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann Nucl Med. 2018;32(6):410–6.

    CAS  PubMed  Google Scholar 

  47. Ferreira M, Lovinfosse P, Hermesse J, Decuypere M, Rousseau C, Lucia F, Schick U, Reinhold C, Robin P, Hatt M, et al. [(18)F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation. Eur J Nucl Med Mol Imaging. 2021;48(11):3432–43.

    PubMed  PubMed Central  Google Scholar 

  48. Mu W, Jiang L, Zhang J, Shi Y, Gray JE, Tunali I, Gao C, Sun Y, Tian J, Zhao X, et al. Non-invasive decision support for NSCLC treatment using PET/CT radiomics. Nat Commun. 2020;11(1):5228.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mu W, Jiang L, Shi Y, Tunali I, Gray JE, Katsoulakis E, Tian J, Gillies RJ, Schabath MB. Non-invasivemeasurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. J Immunother Cancer. 2021;9(6): https://doi.org/10.1136/jitc-2020-002118. PMID: 34135101; PMCID: PMC8211060.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Truong MT, Sakai O. Prediction of the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma by FDG-PET imaging dataset using deep learning analysis: a hypothesis-generating study. Eur J Radiol. 2020;126:108936.

    PubMed  Google Scholar 

  51. Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, Sakai O. Deep learning analysis using FDG-PET to predict treatment outcome in patients with oral cavity squamous cell carcinoma. Eur Radiol. 2020;30(11):6322–30.

    PubMed  Google Scholar 

  52. Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Truong MT, Hirata K, Yasuda K, Kano S, Homma A, Kudo K, et al. Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images. BMC Cancer. 2021;21(1):900.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li Z, Kitajima K, Hirata K, Togo R, Takenaka J, Miyoshi Y, Kudo K, Ogawa T, Haseyama M. Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer. EJNMMI Res. 2021;11(1):10.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cheng NM, Yao J, Cai J, Ye X, Zhao S, Zhao K, Zhou W, Nogues I, Huo Y, Liao CT, et al. Deep learning for fully automated prediction of overall survival in patients with oropharyngeal cancer using FDG-PET imaging. Clin Cancer Res. 2021;27(14):3948–59.

    CAS  PubMed  Google Scholar 

  55. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. 2016. arXiv:1611.07004.

  56. Chen X, Xu C, Yang X, Tao D. Attention-GAN for object transfiguration in wild images. 2018. arXiv:1803.06798.

  57. Wolterink JM, Leiner T, Viergever MA, Isgum I. Generative adversarial networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 2017;36(12):2536–45.

    PubMed  Google Scholar 

  58. Wang Y, Yu B, Wang L, Zu C, Lalush DS, Lin W, Wu X, Zhou J, Shen D, Zhou L. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose. Neuroimage. 2018;174:550–62.

    PubMed  Google Scholar 

  59. Emami H, Dong M, Nejad-Davarani SP, Glide-Hurst CK. Generating synthetic CTs from magnetic resonanceimages using generative adversarial networks. Med Phys. 2018. https://doi.org/10.1002/mp.13047. Epub ahead of print. PMID: 29901223; PMCID: PMC6294710

    Article  PubMed  Google Scholar 

  60. Usman M, Latif S, Asim M, Lee BD, Qadir J. Retrospective motion correction in multishot MRI using generative adversarial network. Sci Rep. 2020;10(1):4786.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shiyam Sundar LK, Iommi D, Muzik O, Chalampalakis Z, Klebermass EM, Hienert M, Rischka L, Lanzenberger R, Hahn A, Pataraia E, et al. Conditional generative adversarial networks aided motion correction of dynamic (18)F-FDG PET brain studies. J Nucl Med. 2021;62(6):871–9.

    PubMed  PubMed Central  Google Scholar 

  62. Schaefferkoetter J, Yan J, Moon S, Chan R, Ortega C, Metser U, Berlin A, Veit-Haibach P. Deep learning for whole-body medical image generation. Eur J Nucl Med Mol Imaging. 2021;48(12):3817–26.

    PubMed  Google Scholar 

  63. Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA, Yang X. Whole-body PET estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64(21):215017.

    PubMed  PubMed Central  Google Scholar 

  64. Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 2019;46(8):3555–64.

    CAS  PubMed  Google Scholar 

  65. Dong X, Lei Y, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA, Yang X. Deep learning-based attenuation correction in the absence of structural information for whole-body positron emission tomography imaging. Phys Med Biol. 2020;65(5):055011.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Armanious K, Hepp T, Küstner T, Dittmann H, Nikolaou K, La Fougère C, Yang B, Gatidis S. Independent attenuation correction of whole body [(18)F]FDG-PET using a deep learning approach with generative adversarial networks. EJNMMI Res. 2020;10(1):53.

    PubMed  PubMed Central  Google Scholar 

  67. Wang R, Liu H, Toyonaga T, Shi L, Wu J, Onofrey JA, Tsai YJ, Naganawa M, Ma T, Liu Y, Chen MK, Mecca AP, O'Dell RS, van Dyck CH, Carson RE, Liu C. Generation of synthetic PET images of synaptic density and amyloidfrom 18 F-FDG images using deep learning. Med Phys. 2021;48(9):5115–29. https://doi.org/10.1002/mp.15073. Epub 2021 Jul 27. PMID: 34224153; PMCID: PMC8455448.

    Article  CAS  PubMed  Google Scholar 

  68. von Ahn L. Augmented intelligence: the web and human intelligence. Philos Trans Series A Math Phys Eng Sci. 2013;371(1987):20120383.

    Google Scholar 

  69. Sollini M, Bartoli F, Marciano A, Zanca R, Slart R, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging. 2020;4(1):24.

    PubMed  PubMed Central  Google Scholar 

  70. Barucci A, Neri E. Adversarial radiomics: the rising of potential risks in medical imaging from adversarial learning. Eur J Nucl Med Mol Imaging. 2020;47(13):2941–3.

    PubMed  Google Scholar 

  71. Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60(Suppl 2):29s–37s.

    PubMed  Google Scholar 

  72. Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inform Fusion. 2022;77:29–52.

    Google Scholar 

  73. Tjoa E, Guan C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans Neural NetwLearn Syst. 2021;32(11):4793–813. https://doi.org/10.1109/TNNLS.2020.3027314. Epub 2021 Oct 27. PMID: 33079674.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Hirata.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirata, K., Sugimori, H., Fujima, N. et al. Artificial intelligence for nuclear medicine in oncology. Ann Nucl Med 36, 123–132 (2022). https://doi.org/10.1007/s12149-021-01693-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01693-6

Keywords

Navigation