Skip to main content
Log in

A pitfall of white matter reference regions used in [18F] florbetapir PET: a consideration of kinetics

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Many studies have demonstrated the superiority of white matter (WM) reference regions (RR) in amyloid PET studies in comparison to cerebellar RR. However, the principle behind its improved measurement stability is yet to be elucidated. Our study aimed to determine the origin of WM stability; stability over cerebral blood flow and input function fluctuation or the greater statistical noise in the cerebellum due to its smaller size and its location in the axial periphery of the PET scanner bore.

Methods

We conducted simulations of [\({}^{18}\)F] florbetapir using in-house program varying \(K_1\) and input function, and adding statistical noise.

Results

Our simulations revealed that WM RR were more susceptible to CBF variation and input function fluctuation than cerebellar RR. WM RR did not gave superior measurement stability unless cerebellar statistical noise exceeded 4.55 times that in WM, a figure often surpassed in traditional amyloid PET studies. The greater statistical noise in cerebellum is likely the etiology for improved measurement stability of WM RR.

Conclusion

A longitudinal [\({}^{18}\)F] florbetapir PET study should be conducted with a long bore PET. It can also be hypothesized that a second scan with the cerebellum in the axial center of a 3D PET, using a cerebellar RR to calculate changes in tracer concentration may improve the measurement stability of longitudinal [\({}^{18}\)F] florbetapir studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19. https://doi.org/10.1002/ana.20009.

    Article  CAS  PubMed  Google Scholar 

  2. Fleisher AS, Joshi AD, Sundell KL, Chen YF, Kollack-Walker S, Lu M, et al. Use of white matter reference regions for detection of change in florbetapir positron emission tomography from completed phase 3 solanezumab trials. Alzheimer’s Dement. 2017;13(10):1117–24. https://doi.org/10.1016/j.jalz.2017.02.009.

    Article  Google Scholar 

  3. Chiao P, Bedell BJ, Avants B, Zijdenbos AP, Grand’Maison M, O’Neill P, et al. Impact of reference/target region selection on amyloid PET standard uptake value ratios in the phase 1b PRIME study of aducanumab. J Nucl Med. 2019;60(1):100–106. https://doi.org/10.2967/jnumed.118.209130.

    Article  CAS  PubMed  Google Scholar 

  4. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27(9):1533–9. https://doi.org/10.1038/sj.jcbfm.9600493.

    Article  CAS  PubMed  Google Scholar 

  5. Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996;16(5):834–40. https://doi.org/10.1097/00004647-199609000-00008.

    Article  CAS  PubMed  Google Scholar 

  6. Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. 1996;4(3):153–8. https://doi.org/10.1006/nimg.1996.0066.

    Article  CAS  PubMed  Google Scholar 

  7. Lammertsma AA. Forward to the past: the case for quantitative PET imaging. J Nucl Med. 2017;58(7):1019–24. https://doi.org/10.2967/jnumed.116.188029.

    Article  CAS  PubMed  Google Scholar 

  8. van Berckel B, Ossenkoppele R, Tolboom N, Yaqub M, Foster-Dingley JC, Windhorst AD, et al. Longitudinal amyloid imaging using \({}^{11}\)C-PiB: methodologic considerations. J Nucl Med. 2013;54(9):1570–6. https://doi.org/10.2967/jnumed.112.113654.

    Article  PubMed  Google Scholar 

  9. Brendel M, Högenauer M, Delker A, Sauerbeck J, Bartenstein P, Seibyl J, et al. Improved longitudinal [\({}^{18}\)F]-AV45 amyloid PET by white matter reference and VOI-based partial volume effect correction. Neuroimage. 2015;108:450–9. https://doi.org/10.1016/j.neuroimage.2014.11.055.

    Article  PubMed  Google Scholar 

  10. Chen K, Roontiva A, Thiyyagura P, Lee W, Liu X, Ayutyanont N, et al. Improved power for characterizing longitudinal amyloid-\(\beta\) PET changes and evaluating amyloid-modifying treatments with a cerebral white matter reference region. J Nucl Med. 2015;56(4):560–6. https://doi.org/10.2967/jnumed.114.149732.

    Article  PubMed  Google Scholar 

  11. Landau SM, Fero A, Baker SL, Koeppe R, Mintun M, Chen K, et al. Measurement of longitudinal \(\beta\)-amyloid change with \({}^{18}\)F-florbetapir PET and standardized uptake value ratios. J Nucl Med. 2015;56(4):567–74. https://doi.org/10.2967/jnumed.114.148981.

    Article  PubMed  Google Scholar 

  12. Blautzik J, Brendel M, Sauerbeck J, Kotz S, Scheiwein F, Bartenstein P, et al. Reference region selection and the association between the rate of amyloid accumulation over time and the baseline amyloid burden. Eur J Nucl Med Mol Imaging. 2017;44(8):1364–74. https://doi.org/10.1007/s00259-017-3666-8.

    Article  CAS  PubMed  Google Scholar 

  13. Ottoy J, Verhaeghe J, Niemantsverdriet E, Wyffels L, Somers C, De Roeck E, et al. Validation of the semiquantitative static SUVR method for \({}^{18}\)F-AV45 PET by pharmacokinetic modeling with an arterial input function. J Nucl Med. 2017;58(9):1483–9. https://doi.org/10.2967/jnumed.116.184481.

    Article  PubMed  Google Scholar 

  14. Tryputsen V, DiBernardo A, Samtani M, Novak GP, Narayan VA, Raghavan N. Optimizing regions-of-interest composites for capturing treatment effects on brain amyloid in clinical trials. J Alzheimer’s Dis. 2015;43(3):809–21. https://doi.org/10.3233/JAD-131979.

    Article  CAS  Google Scholar 

  15. Schwarz CG, Senjem ML, Gunter JL, Tosakulwong N, Weigand SD, Kemp BJ, et al. Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. Neuroimage. 2017;144:113–27. https://doi.org/10.1016/j.neuroimage.2016.08.056.

    Article  PubMed  Google Scholar 

  16. Bullich S, Villemagne VL, Catafau AM, Jovalekic A, Koglin N, Rowe CC, et al. Optimal reference region to measure longitudinal amyloid-\(\beta\) change with \({}^{18}\)F-Florbetaben PET. J Nucl Med. 2017;58(8):1300–6. https://doi.org/10.2967/jnumed.116.187351.

    Article  PubMed  Google Scholar 

  17. Valentina G, Silvia M, Marco P. Dual-phase amyloid PET: hitting two birds with one stone. Eur J Nucl Med Mol Imaging. 2016;43(7):1300–3. https://doi.org/10.1007/s00259-016-3393-6.

    Article  PubMed  Google Scholar 

  18. Kubota K, Itoh M, Ozaki K, Ono S, Tashiro M, Yamaguchi K, et al. Advantage of delayed whole-body FDG-PET imaging for tumour detection. Eur J Nucl Med. 2001;28(6):696–703. https://doi.org/10.1007/s002590100537.

    Article  CAS  PubMed  Google Scholar 

  19. Chen YJ, Rosario BL, Mowrey W, Laymon CM, Lu X, Lopez OL, et al. Relative \({}^{11}\)C-PiB delivery as a proxy of relative CBF: quantitative evaluation using single-session \({}^{15}\)O-water and \({}^{11}\)C-PiB PET. J Nucl Med. 2015;56(8):1199. https://doi.org/10.2967/jnumed.114.152405.

    Article  PubMed  Google Scholar 

  20. Cselényi Z, Farde L. Quantification of blood flow-dependent component in estimates of beta-amyloid load obtained using quasi-steady-state standardized uptake value ratio. J Cereb Blood Flow Metab. 2015;35(9):1485–93. https://doi.org/10.1038/jcbfm.2015.66.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schwarz CG, Jones DT, Gunter JL, Lowe VJ, Vemuri P, Senjem ML, et al. Contributions of imprecision in PET-MRI rigid registration to imprecision in amyloid PET SUVR measurements. Hum Brain Mapp. 2017;38(7):3323–36. https://doi.org/10.1002/hbm.23622.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fox PT, Raichle ME, Mintun MA, Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988;241(4864):462–4. https://doi.org/10.1126/science.3260686.

    Article  CAS  PubMed  Google Scholar 

  23. Shokouhi S, Mckay JW, Baker SL, Kang H, Brill AB, Gwirtsman HE, et al. Reference tissue normalization in longitudinal \({}^{18}\)F-florbetapir positron emission tomography of late mild cognitive impairment. Alzheimer’s Res Ther. 2016;8(1):2. https://doi.org/10.1186/s13195-016-0172-3.

    Article  Google Scholar 

  24. Su Y, Blazey TM, Owen CJ, Christensen JJ, Friedrichsen K, Joseph-Mathurin N, et al. Quantitative amyloid imaging in autosomal dominant Alzheimer’s disease: results from the DIAN study group. PLoS ONE. 2016;11(3):e0152082. https://doi.org/10.1371/journal.pone.0152082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Oliveira F, Leuzy A, Castelhano J, Chiotis K, Hasselbalch SG, Rinne J, et al. Data driven diagnostic classification in Alzheimer’s disease based on different reference regions for normalization of PiB-PET images and correlation with CSF concentrations of A\(\beta\) species. NeuroImage: Clinical. 2018;20:603–10. https://doi.org/10.1016/j.nicl.2018.08.023.

  26. Ito H, Ikoma Y, Seki C, Kimura Y, Kawaguchi H, Takuwa H, et al. Visual evaluation of kinetic characteristics of PET probe for neuroreceptors using a two-phase graphic plot analysis. Ann Nucl Med. 2017;31(4):273–82. https://doi.org/10.1007/s12149-017-1155-6.

    Article  CAS  PubMed  Google Scholar 

  27. Ottoy J, Verhaeghe J, Niemantsverdriet E, Engelborghs S, Stroobants S, Staelens S. A simulation study on the impact of the blood flow-dependent component in [\({}^{18}\)F] AV45 SUVR in Alzheimer’s disease. PloS ONE. 2017;12(12):e0189155. https://doi.org/10.1371/journal.pone.0189155.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Baron J, Bousser M, Comar D, Soussaline F, Castaigne P. Noninvasive tomographic study of cerebral blood flow and oxygen metabolism in vivo. Eur Neurol. 1981;20(3):273–84. https://doi.org/10.1159/000115247.

    Article  CAS  PubMed  Google Scholar 

  29. Lacalle-Aurioles M, Alemán-Gómez Y, Guzmán-De-Villoria JA, Cruz-Orduña I, Olazarán J, Mateos-Pérez JM, et al. Is the cerebellum the optimal reference region for intensity normalization of perfusion MR studies in early Alzheimer’s disease? PloS ONE. 2013;8(12):e81548. https://doi.org/10.1371/journal.pone.0081548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lowe VJ, Lundt ES, Senjem ML, Schwarz CG, Min HK, Przybelski SA, et al. White matter reference region in PET studies of \({}^{11}\)C-Pittsburgh Compound B uptake: effects of age and amyloid-\(\beta\) deposition. J Nucl Med. 2018;59(10):1583–9. https://doi.org/10.2967/jnumed.117.204271.

Download references

Acknowledgements

This study is partly supported by Grants-in-Aid for Scientific Research, Japan Society for the Promotion of Science (Grant No. 18K07488) for MK. The authors would like to thank Ms. Natalie Okawa for English language editing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MK conceived the study, wrote the simulation coding for python and wrote the initial manuscript. KI analyzed dynamic PET data and advised on the project. KW and JT contributed to obtain input function data of [\({}^{18}\)F] florbetapir. KI supervised the project. All authors discussed and approved the final manuscript.

Corresponding author

Correspondence to Masashi Kameyama.

Ethics declarations

Conflict of interest

MK received research fund from Fujifilm Toyama Chemical Co., Ltd., which supplies [\({}^{18}\)F] Florbetapir in Japan but played no role in this mamuscript, and Nihon Medi-Physics Co. Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kameyama, M., Ishibash, K., Wagatsuma, K. et al. A pitfall of white matter reference regions used in [18F] florbetapir PET: a consideration of kinetics. Ann Nucl Med 33, 848–854 (2019). https://doi.org/10.1007/s12149-019-01397-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-019-01397-y

Keywords

Navigation