Skip to main content
Log in

Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in mantle cell lymphoma

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Mantle cell lymphoma (MCL) is an aggressive lymphoma sub-type with poor prognosis and high 18F-FDG avidity at PET/CT; nowadays, no validated criteria for PET/CT in treatment response evaluation and prediction of outcome are present. The aim of study was to investigate whether the metabolic PET/CT features may predict treatment evaluation and prognosis in MCL.

Methods

We retrospectively enrolled 87 patients who underwent baseline 18F-FDG PET/CT and 85 end-of-treatment (eot) PET/CT. The baseline PET images were analyzed visually and semi-quantitatively by measuring the maximum standardized uptake value body weight (SUVbw), lean body mass (SUVlbm), body surface area (SUVbsa), lesion-to-liver SUVmax ratio (L-L SUV R), lesion-to-blood pool SUVmax ratio (L-BP SUV R), metabolic tumor volume (MTV) and total lesion glycolysis (TLG). EotPET/CT was visually interpreted according to the criteria of the Deauville 5-point scale (DC). Survival curves were plotted according to the Kaplan–Meier method.

Results

At a median follow-up of 40 months, relapse/progression occurred in 47 and death in 23 patients. Median PFS and OS were 30 and 41 months. Baseline MTV and TLG were significantly higher in patients with progressive metabolic response compared to complete/partial response group. EotPET/CT results using DC significantly correlated with PFS, not with OS. MTV and TLG were demonstrated to be independent prognostic factors for PFS; instead the other metabolic parameters were not related to outcome survival. Considering OS, no variable was significantly associated.

Conclusions

EotPET/CT results (using DC), MTV and TLG were significantly correlated with response to treatment and PFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, et al. World health organization classification of tumours of haematopoietic and lymphoid tissues. Lyon: IARC Press; 2008.

    Google Scholar 

  2. Maddocks K. Update on mantle cell lymphoma. Blood. 2018;132:1647–56.

    Article  CAS  PubMed  Google Scholar 

  3. Hoster E, Dreyling M, Klapper W, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111:558–65.

    Article  CAS  PubMed  Google Scholar 

  4. Shah JJ, Fayad L, Romaguera J. Mantle cell international prognostic index (MIPI) not prognostic after R-hyper-CVAD. Blood. 2008;112:2583 author reply 2583-2584.

    Article  CAS  PubMed  Google Scholar 

  5. MatoAr Svodoba J, Feldman T, et al. Post-treatment (not interim) positron emission tomography-computed tomography scan status is highly predictive of outcome in mantle cell lymphoma patients treated with R-HyperCVAD. Cancer. 2012;118:3565–70.

    Article  Google Scholar 

  6. Katzenberger T, Petzoldt C, Holler S, et al. The Ki67 proliferation index is a quantitative indicator of clinical risk in mantle cell lymphoma. Blood. 2006;107:3407.

    Article  CAS  PubMed  Google Scholar 

  7. Tiemann M, Schrader C, Klapper W, Dreyling MH, Campo E, Norton A, et al. Histopathology, cell proliferation indices and clinical outcome in 304 patients with mantle cell lymphoma (MCL): a clinicopathological study from the European MCL Network. Br J Haematol. 2005;131:29–38.

    Article  PubMed  Google Scholar 

  8. Gill S, Wolf M, Miles Prince H, et al. 18F Fluorodeoxyglucose positron emission tomography scanning for staging, response assessment, and disease surveillance in patients with Mantle cell lymphoma. Clin Lymphoma Myeloma Leuk. 2008;8:158–65.

    Google Scholar 

  9. Alavi A, Shrikanthan S, Aydin A, et al. Fluorodeoxyglucose-positron-emission tomography findings in mantle cell lymphoma. Clin Lymphoma Myeloma Leuk. 2011;11:261–6.

    Article  PubMed  Google Scholar 

  10. Brepoels L, Stroobants S, De Wever W, et al. Positron emission tomography in mantle cell lymphoma. Leuk Lymphoma. 2008;49:1693–701.

    Article  PubMed  Google Scholar 

  11. Hosein PJ, Pastorini VH, Paes FM, et al. Utility of positron emission tomography scans in mantle cell lymphoma. Am J Hematol. 2011;86:841–5.

    Article  PubMed  Google Scholar 

  12. Cohen JB, Hall NC, Ruppert AS, et al. Association of pre-transplantation positron emission tomography/computed tomography and outcome in mantle cell lymphoma. Bone Marrow Transplant. 2013;48:1212–7.

    Article  CAS  PubMed  Google Scholar 

  13. Tateishi U, Tatsumi M, Terauchi T, et al. Relevance of monitoring metabolic reduction in patients with relapsed or refractory follicular and mantle cell lymphoma receiving bendamustine: a multicenter study. Cancer Sci. 2011;102:414–8.

    Article  CAS  PubMed  Google Scholar 

  14. Kedmi M, Avivi I, Ribakovsky E, et al. Is there a role for therapy response assessment with 2-[fluorine-18] fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in mantle cell lymphoma? Leuk Lymphoma. 2014;55:2484–9.

    Article  CAS  PubMed  Google Scholar 

  15. Magnusson E, Cao Q, Linden MA, et al. Hematopoietic cell transplantation for mantle cell lymphoma: predictive value of pretransplant positron emission tomography/computed tomography and bone marrow evaluations for outcomes. Clin Lymphoma Myeloma Leuk. 2014;14:114–21.

    Article  PubMed  Google Scholar 

  16. Mei MG, Cao TM, Chen L, et al. Long-term results of high-dose therapy and autologous stem cell transplantation for mantle cell lymphoma: effectiveness of maintenance rituximab. Biol Blood Marrow Transpl. 2017;23:1861–9.

    Article  CAS  Google Scholar 

  17. Guidot DM, Switchenko JM, Nastoupil LJ, et al. Surveillance imaging in mantle cell lymphoma in first remission lacks clinical utility. Leuk Lymphoma. 2018;59:888–95.

    Article  PubMed  Google Scholar 

  18. Cheson BD, Fisher RI, Barrington SF, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32:3059–68.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bomben R, Ferrero S, D’Agaro T, et al. A B-cell receptor-related gene signature predicts survival in mantle cell lymphoma: results from the Fondazione Italiana Linfomi MCL-0208 trial. Hemtaologica. 2018;103:849–56.

    Article  CAS  Google Scholar 

  20. Boellaard R, Delgado-Bolton R, Oyen WJ, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.

    Article  CAS  PubMed  Google Scholar 

  21. Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014;32:3048–58.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Fernandez V, Hartmann E, Ott G, et al. Pathogenesis of mantle-cell lymphoma: all oncogenic roads lead to dysregulation of cell cycle and DNA damage response pathways. J Clin Oncol. 2005;23:6364–9.

    Article  CAS  PubMed  Google Scholar 

  23. Leonard JP, Schattner EJ, Coleman M. Biology and management of mantle cell lymphoma. Curr Opin Oncol. 2001;13:342–7.

    Article  CAS  PubMed  Google Scholar 

  24. Garcia M, Romaguera JE, Inamdar KV, et al. Proliferation predicts failure-free survival in mantle cell lymphoma patients treated with rituximab plus hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone alternating with rituximab plus high-dose methotrexate and cytarabine. Cancer. 2009;115:1041–8.

    Article  CAS  PubMed  Google Scholar 

  25. Martin P, Chadburn A, Christos P, et al. Outcome of deferred initial therapy in mantle-cell lymphoma. J Clin Oncol. 2009;27:1209–13.

    Article  PubMed  Google Scholar 

  26. Weiler-Sagie M, Bushelev O, Epelbaum R, et al. (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51:25–30.

    Article  PubMed  Google Scholar 

  27. Meignan M, Gallamini A, Haioun C, Polliack A. Report on the second international workshop on interim positron emission tomography in lymphoma held in Menton, France, 8–9 April 2010. Leuk Lymphoma. 2010;51:2171–80.

    Article  PubMed  Google Scholar 

  28. Albano D, Bosio G, Re A, et al. Metabolic behaviour and prognostic value of early and end of treatment 18F-FDG PET/CT in adult Burkitt lymphoma: role of Deauville and IHP criteria. Leuk Lymphoma. 2018;3:1–8.

    Google Scholar 

  29. Klener P, Fronkova E, Belada D, et al. Alternating R-CHOP and R-cytarabine is a safe and effective regimen for transplant-ineligible patients with a newly diagnosed mantle cell lymphoma. HematolOncol. 2018;36:110–5.

    CAS  Google Scholar 

  30. Lamonica D, Graf DA, Munteanu MC, Czuczman MS. 18F-FDG PET for measurement of response and prediction of outcome to relapsed or refractory mantle cell lymphoma therapy with bendamustine-rituximab. J Nucl Med. 2017;58:62–8.

    Article  CAS  PubMed  Google Scholar 

  31. Czuczman MS, Goy A, Lamonica D, et al. Phase II study of bendamustine combined with rituximab in relapsed/refractory mantle cell lymphoma: efficacy, tolerability, and safety findings. Ann Hematol. 2015;94:2025–32.

    Article  CAS  PubMed  Google Scholar 

  32. Kostakoglu L, Chauvie S. Metabolic tumour volume metrics in lymphoma. Semin Nucl Med. 2018;48:50–66.

    Article  PubMed  Google Scholar 

  33. Xie M, Wu K, Liu Y, et al. Predictive value of F-18 FDG PET/CT quantization parameters in diffuse large B cell lymphoma: a meta-analysis with 702 participants. Med Oncol. 2015;32:446.

    Article  CAS  PubMed  Google Scholar 

  34. Albano D, Bertoli M, Battistotti M, et al. Prognostic role of pretreatment 18F-FDG PET/CT in primary brain lymphoma. Ann Nucl Med. 2018;32:532–41.

    Article  CAS  PubMed  Google Scholar 

  35. Procházka V, Klugar M, Bachanova V, et al. Comparing the accuracy of quantitative versus qualitative analyses of interim PET to prognosticate Hodgkin lymphoma: a systematic review protocol of diagnostic test accuracy. BMJ Open. 2016;5:6.

    Google Scholar 

  36. Albano D, Bosio G, Pagani C, et al. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in Burkitt lymphoma. Eur J Nucl Med Mol Imaging. 2019;46:87–96.

    Article  PubMed  Google Scholar 

  37. Karam M, Ata A, Irish K, et al. DG positron emission tomography/computed tomography scan may identify mantle cell lymphoma patients with unusually favorable outcome. Nucl Med Comm. 2009;30:770–8.

    Article  Google Scholar 

  38. Bodet-Milin C, Touzeau C, Leux C, et al. Prognostic impact of 18F-fluorodeoxyglucose positron emission tomography in untreated mantle cell lymphoma: a retrospective study from GOELAMS group. Eur J Nucl Med Mol Imaging. 2010;37:1633–42.

    Article  CAS  PubMed  Google Scholar 

  39. Meignan M, Cottereau AS, Versari A, et al. Baseline metabolic tumor volume predicts outcome in high–tumor-burden follicular lymphoma: a pooled analysis of three multicenter studies. J ClinOncol. 2016;34:3618–26.

    Article  Google Scholar 

  40. Kanoun S, Rossi C, Berriolo-Riedinger A, et al. Baseline metabolic tumour volume is an independent prognostic factor in Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2014;41:1735–43.

    Article  PubMed  Google Scholar 

  41. Moskowitz AJ, Schoder H, Gavane S, et al. Prognostic significance of baseline metabolic tumor volume in relapsed and refractory Hodgkin lymphoma. Blood. 2017;130:2196–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sasanelli M, Meignan M, Haioun C, et al. Pretherapy metabolic tumour volume is an independent predictor of outcome in patients with diffuse large B-cell lymphoma. Eur J Nucl Med Mol Imaging. 2014;41:2017–22.

    Article  CAS  PubMed  Google Scholar 

  43. Mikhaeel NG, Smith D, Dunn JT, et al. Combination of baseline metabolic tumour volume and early response on PET/CT improves progression-free survival prediction in DLBCL. Eur J Nucl Med Mol Imaging. 2016;43:1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Albano D, Bosio G, Camoni L, et al. Prognostic role of baseline 18F-FDG PET/CT parameters in MALT lymphoma. Hematol Oncol. 2019;37:39–46. https://doi.org/10.1002/hon.2563.

    Article  CAS  PubMed  Google Scholar 

  45. Bernard M, Gressin R, Lefrère F, et al. Blastic variant of mantle cell lymphoma: a rare but highly aggressive subtype. Leukemia. 2001;15:1785–91.

    Article  CAS  PubMed  Google Scholar 

  46. Weigert O, Unterhalt M, Hiddemann W, Dreyling M. Current management of mantle cell lymphoma. Drugs. 2007;67:1689–702.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Albano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All the procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. For this type of study, formal consent is not required.

Informed consent

Informed consent was obtained from all the individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albano, D., Bosio, G., Bianchetti, N. et al. Prognostic role of baseline 18F-FDG PET/CT metabolic parameters in mantle cell lymphoma. Ann Nucl Med 33, 449–458 (2019). https://doi.org/10.1007/s12149-019-01354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-019-01354-9

Keywords

Navigation