Skip to main content

Advertisement

Log in

F-18 FDG uptake on positron emission tomography as a predictor for lymphovascular invasion in patients with lung adenocarcinoma

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the contributory value of Fluorine-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) in the prediction of lymphovascular tumor invasion in patients with lung adenocarcinoma.

Materials and methods

We evaluated F-18 FDG-PET/CT images in 84 patients with histopathologically proven lung adenocarcinoma (37 men and 47 women, age range 39–83 years, mean age 67.0 ± 8.9 years). The maximum standardized uptake values (SUVmax) of the carcinomas were measured from the PET images. The Mann–Whitney U test was conducted to compare the median SUVmax between the tumor groups with and without lymphovascular invasion. In the subgroup patients with no lymph-node metastasis, we also compared the median SUVmax between the tumor groups with and without lymphatic invasion.

Results

The tumors with lymphovascular invasion had a significantly (P < 0.0001) greater median SUVmax than those without invasion. In the subgroup patients with no lymph-node metastasis, the median SUVmax was higher in tumors with lymphatic invasion than those without (P = 0.0004). The sensitivity, specificity, and area under the receiver operating characteristic curve for the detection of tumors with lymphovascular invasion were 89, 75 %, and 0.82, respectively, with a cutoff SUVmax value of 2.32.

Conclusion

The SUVmax of lung adenocarcinoma is a potential imaging biomarker for predicting tumor lymphovascular invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin. 2015;65(1):5–29.

    Article  PubMed  Google Scholar 

  2. Poleri C, Morero JL, Nieva B, Vazquez MF, Rodriguez C, de Titto E, et al. Risk of recurrence in patients with surgically resected stage I non-small cell lung carcinoma: histopathologic and immunohistochemical analysis. Chest. 2003;123(6):1858–67.

    Article  PubMed  Google Scholar 

  3. Sawabata N, Asamura H, Goya T, Mori M, Nakanishi Y, Eguchi K, et al. Japanese Lung Cancer Registry Study: first prospective enrollment of a large number of surgical and nonsurgical cases in 2002. J Thorac Oncol. 2010;5(9):1369–75.

    Article  PubMed  Google Scholar 

  4. Shiono S, Abiko M, Sato T. Positron emission tomography/computed tomography and lymphovascular invasion predict recurrence in stage I lung cancers. J Thorac Oncol. 2011;6(1):43–7.

    Article  PubMed  Google Scholar 

  5. Giraud P, Antoine M, Larrouy A, Milleron B, Callard P, De Rycke Y, et al. Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys. 2000;48(4):1015–24.

    Article  PubMed  CAS  Google Scholar 

  6. Mimae T, Tsutani Y, Miyata Y, Yoshiya T, Ibuki Y, Kushitani K, et al. Role of lymphatic invasion in the prognosis of patients with clinical node-negative and pathologic node-positive lung adenocarcinoma. J Thorac Cardiovasc Surg. 2014;147(6):1820–6.

    Article  PubMed  Google Scholar 

  7. Scott AM. Current status of positron emission tomography in oncology. Intern Med J. 2001;31(1):27–36.

    Article  PubMed  CAS  Google Scholar 

  8. Hustinx R, Benard F, Alavi A. Whole-body FDG-PET imaging in the management of patients with cancer. Semin Nucl Med. 2002;32(1):35–46.

    Article  PubMed  Google Scholar 

  9. Flier JS, Mueckler MM, Usher P, Lodish HF. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science. 1987;235(4795):1492–5.

    Article  PubMed  CAS  Google Scholar 

  10. Monakhov NK, Neistadt EL, Shavlovskil MM, Shvartsman AL, Neifakh SA. Physicochemical properties and isoenzyme composition of hexokinase from normal and malignant human tissues. J Natl Cancer Inst. 1978;61(1):27–34.

    PubMed  CAS  Google Scholar 

  11. Lv YL, Yuan DM, Wang K, Miao XH, Qian Q, Wei SZ, et al. Diagnostic performance of integrated positron emission tomography/computed tomography for mediastinal lymph node staging in non-small cell lung cancer: a bivariate systematic review and meta-analysis. J Thorac Oncol. 2011;6(8):1350–8.

    Article  PubMed  Google Scholar 

  12. Paul NS, Ley S, Metser U. Optimal imaging protocols for lung cancer staging: cT, PET, MR imaging, and the role of imaging. Radiol Clin North Am. 2012;50(5):935–49.

    Article  PubMed  Google Scholar 

  13. Agarwal M, Brahmanday G, Bajaj SK, Ravikrishnan KP, Wong CY. Revisiting the prognostic value of preoperative (18)F-fluoro-2-deoxyglucose ((18)F-FDG) positron emission tomography (PET) in early-stage (I & II) non-small cell lung cancers (NSCLC). Eur J Nucl Med Mol Imaging. 2010;37(4):691–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goldstein NS, Mani A, Chmielewski G, Welsh R, Pursel S. Prognostic factors in T1 N0 M0 adenocarcinomas and bronchioloalveolar carcinomas of the lung. Am J Clin Pathol. 1999;112(3):391–402.

    PubMed  CAS  Google Scholar 

  15. Yang F, Chen K, Liao Y, Li X, Sun K, Bao D, et al. Risk factors of recurrence for resected T1aN0M0 invasive lung adenocarcinoma: a clinicopathologic study of 177 patients. World J Surg Oncol. 2014;12:285.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marom EM, McAdams HP, Erasmus JJ, Goodman PC, Culhane DK, Coleman RE, et al. Staging non-small cell lung cancer with whole-body PET. Radiology. 1999;212(3):803–9.

    Article  PubMed  CAS  Google Scholar 

  17. Garin E, Le Jeune F, Devillers A, Cuggia M, de Lajarte-Thirouard AS, Bouriel C, et al. Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med. 2009;50(6):858–64.

    Article  PubMed  CAS  Google Scholar 

  18. Kitagawa Y, Sano K, Nishizawa S, Nakamura M, Ogasawara T, Sadato N, et al. FDG-PET for prediction of tumour aggressiveness and response to intra-arterial chemotherapy and radiotherapy in head and neck cancer. Eur J Nucl Med Mol Imaging. 2003;30(1):63–71.

    Article  PubMed  CAS  Google Scholar 

  19. Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, Lafitte JJ, et al. Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol. 2010;5(5):612–9.

    Article  PubMed  Google Scholar 

  20. Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Castaigne C, et al. Primary tumor standardized uptake value (SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol. 2008;3(1):6–12.

    Article  PubMed  Google Scholar 

  21. Funai K, Sugimura H, Morita T, Shundo Y, Shimizu K, Shiiya N. Lymphatic vessel invasion is a significant prognostic indicator in stage IA lung adenocarcinoma. Ann Surg Oncol. 2011;18(10):2968–72.

    Article  PubMed  Google Scholar 

  22. Vaupel P, Briest S, Hockel M. Hypoxia in breast cancer: pathogenesis, characterization and biological/therapeutic implications. Wien Med Wochenschr. 2002;152(13–14):334–42.

    Article  PubMed  CAS  Google Scholar 

  23. Hockel M, Vaupel P. Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst. 2001;93(4):266–76.

    Article  PubMed  CAS  Google Scholar 

  24. Higuchi M, Hasegawa T, Osugi J, Suzuki H, Gotoh M. Prognostic Impact of FDG-PET in surgically treated pathological stage i lung adenocarcinoma. Ann Thorac Cardiovasc Surg. 2014;20(3):185–91.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Goshima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noda, Y., Goshima, S., Kanematsu, M. et al. F-18 FDG uptake on positron emission tomography as a predictor for lymphovascular invasion in patients with lung adenocarcinoma. Ann Nucl Med 30, 11–17 (2016). https://doi.org/10.1007/s12149-015-1023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-015-1023-1

Keywords

Navigation