Skip to main content

Advertisement

Log in

89Sr bremsstrahlung single photon emission computed tomography using a gamma camera for bone metastases

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Strontium-89 chloride (89Sr) bremsstrahlung single photon emission computed tomography (SPECT) imaging was evaluated for detecting more detailed whole body 89Sr distribution.

Methods

89Sr bremsstrahlung whole body planar and merged SPECT images were acquired using two-detector SPECT system. Energy window A (100 keV ± 50 %) for planar imaging and energy window A plus adjacent energy window B (300 keV ± 50 %) for SPECT imaging were set on the continuous spectrum. Thirteen patients with multiple bone metastases were evaluated. Bone metastases can be detected with 99mTc-HMDP whole body planar and merged SPECT images and compared with 89Sr bremsstrahlung whole body planar and merged SPECT images. Based on the location of metastatic lesions seen as hot spots on 99mTc-HMDP images as a reference, the hot spots on 89Sr bremsstrahlung images were divided into the same bone parts as 99mTc-HMDP images (a total of 35 parts in the whole body), and the number of hot spots were counted. We also evaluated the incidence of extra-osseous uptakes in the intestine on 89Sr bremsstrahlung whole body planar images.

Results

A total of 195 bone metastatic lesions were detected in both 99mTc-HMDP whole body planar and merged SPECT images. Detection of hot spot lesions in 89Sr merged SPECT images (127 of 195; 66 %) was more frequent than in 89Sr whole body planar images (108 of 195; 56 %), based on metastatic bone lesions in 99mTc-HMDP whole body planar and merged SPECT images. A large intestinal 89Sr accumulation was detected in 5 of the 13 patients (38 %).

Conclusions

89Sr bremsstrahlung-merged SPECT imaging could be more useful for detailed detection of whole body 89Sr distribution than planar imaging. Intestinal 89Sr accumulation due to 89Sr physiologic excretion was detected in feces for 4 days after tracer injection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Paes FM, Serafini AN. Systemic metabolic radiopharmaceutical therapy in the treatment of metastatic bone pain. Semin Nucl Med. 2010;40:89–104.

    Article  PubMed  Google Scholar 

  2. Kuroda I. Effective use of strontium-89 in osseous metastases. Ann Nucl Med. 2012;26:197–206.

    Article  CAS  PubMed  Google Scholar 

  3. Robinson RG, Spicer JA, Preston DF, Wegst AV, Martin NL. Treatment of metastatic bone pain with strontium-89. Int J Rad Appl Instrum B. 1987;14:219–22.

    Article  CAS  PubMed  Google Scholar 

  4. Bodei L, Lam M, Chiesa C, Flux G, Brans B, Chiti A, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. Eur J Nucl Med Mol Imaging. 2008;35:1934–40.

    Article  PubMed  Google Scholar 

  5. Serafini AN. Therapy of metastatic bone pain. J Nucl Med. 2001;42:895–906.

    CAS  PubMed  Google Scholar 

  6. Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol. 2005;6:392–400.

    Article  CAS  PubMed  Google Scholar 

  7. Lewington VJ. Bone-seeking radionuclides for therapy. J Nucl Med. 2005;46:38S–47S.

    CAS  PubMed  Google Scholar 

  8. Kan MK. Palliation of bone pain in patients with metastatic cancer using strontium-89 (Metastron). Cancer Nurs. 1995;18:286–91.

    Article  CAS  PubMed  Google Scholar 

  9. Cipriani C, Atzei G, Argirò G, Boemi S, Shukla S, Rossi G, et al. Gamma camera imaging of osseous metastatic lesions by strontium-89 bremsstrahlung. Eur J Nucl Med. 1997;24:1356–61.

    Article  CAS  PubMed  Google Scholar 

  10. Narita H, Uchiyama M, Ooshita T, Hirase K, Makino M, Mori Y, et al. Imaging of strontium-89 uptake with bremsstrahlung using NaI scintillation camera. Kaku Igaku. 1996;33:1207–12 (in Japanese).

    Google Scholar 

  11. Uchiyama M, Narita H, Makino M, Sekine H, Mori Y, Fukumitsu N, et al. Strontium-89 therapy and imaging with bremsstrahlung in bone metastases. Clin Nucl Med. 1997;22:605–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ota S, Toyama H, Uno M, Kato M, Ishiguro M, Natsume T, et al. A trial of 89Sr bremsstrahlung SPECT. Kaku Igaku. 2011;48:101–7 (in Japanese).

    Google Scholar 

  13. Blake GM, Zivanovic MA, Lewington VJ. Measurements of the strontium plasma clearance rate in patients receiving 89Sr radionuclide therapy. Eur J Nucl Med. 1989;15:780–3.

    CAS  PubMed  Google Scholar 

  14. Sisson JC, Yanik GA. Theranostics: evolution of the radiopharmaceutical meta-iodobenzylguanidine in endocrine tumors. Semin Nucl Med. 2012;42:171–84.

    Article  PubMed  Google Scholar 

  15. Baziotis N, Yakoumakis E, Zissimopoulos A, Geronicola-Trapali X, Malamitsi J, Proukakis C. Strontium-89 chloride in the treatment of bone metastases from breast cancer. Oncology. 1998;55:377–81.

    Article  CAS  PubMed  Google Scholar 

  16. Rossleigh MA, Murray IP, Mackey DW, Bargwanna KA, Nayanar VV. Pediatric solid tumors: evaluation by gallium-67 SPECT studies. J Nucl Med. 1990;31:168–72.

    CAS  PubMed  Google Scholar 

  17. Gelfand MJ, Elgazzar AH, Kriss VM, Masters PR, Golsch GJ. Iodine-123-MIBG SPECT versus planar imaging in children with neural crest tumors. J Nucl Med. 1994;35:1753–7.

    CAS  PubMed  Google Scholar 

  18. De Maeseneer M, Lenchik L, Everaert H, Marcelis S, Bossuyt A, Osteaux M, et al. Evaluation of lower back pain with bone scintigraphy and SPECT. Radiographics. 1999;19:901–12.

    Article  PubMed  Google Scholar 

  19. Uematsu T, Yuen S, Yukisawa S, Aramaki T, Morimoto N, Endo M, et al. Comparison of FDG PET and SPECT for detection of bone metastases in breast cancer. Am J Roentgenol. 2005;184:1266–73.

    Article  Google Scholar 

  20. Ito S, Kurosawa H, Kasahara H, Teraoka S, Ariga E, Deji S, et al. (90)Y bremsstrahlung emission computed tomography using gamma cameras. Ann Nucl Med. 2009;23:257–67.

    Article  CAS  PubMed  Google Scholar 

  21. Siegel JA. Quantitative bremsstrahlung SPECT imaging: attenuation-corrected activity determination. J Nucl Med. 1994;35:1213–6.

    CAS  PubMed  Google Scholar 

  22. Mansberg R, Sorensen N, Mansberg V, Van der Wall H. Yttrium 90 Bremsstrahlung SPECT/CT scan demonstrating areas of tracer/tumour uptake. Eur J Nucl Med Mol Imaging. 2007;34:1887.

    Google Scholar 

  23. Minarik D, Sjögreen Gleisner K, Ljungberg M. Evaluation of quantitative (90)Y SPECT based on experimental phantom studies. Phys Med Biol. 2008;53:5689–703.

    Article  CAS  PubMed  Google Scholar 

  24. Cohn SH, Lippencott SW, Gusmano EA, Robertson JS. Comparative kinetics of Ca47 and Sr85 in man. Radiat Res. 1963;19:104–19.

    Article  CAS  PubMed  Google Scholar 

  25. Blake GM, Zivanovic MA, McEwan AJ, Ackery DM. Sr-89 therapy: strontium kinetics in disseminated carcinoma of the prostate. Eur J Nucl Med. 1986;12:447–54.

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

We have no disclosure and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichiro Ota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ota, S., Uno, M., Kato, M. et al. 89Sr bremsstrahlung single photon emission computed tomography using a gamma camera for bone metastases. Ann Nucl Med 28, 112–119 (2014). https://doi.org/10.1007/s12149-013-0788-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0788-3

Keywords

Navigation