Skip to main content

Advertisement

Log in

Deep learning-based classification of mature and immature lavender plants using UAV orthophotos and a hybrid CNN approach

  • Research
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The classification of vegetation types worldwide plays a significant role in studies involving remote sensing. This method, used notably in agriculture, aids producers in devising more efficient agricultural management models. It relies on satellite and aircraft technologies to analyze agricultural lands. Nevertheless, the recent emergence of unmanned aerial vehicles (UAVs) has introduced faster and more cost-effective alternatives to traditional satellite and aircraft systems. These UAVs provide higher resolution images, leading to a shift in remote sensing practices. For deep learning in UAV-based image classification, convolutional neural network (CNN) techniques are commonly employed due to their advantageous features and exceptional extraction capabilities. This study proposes a hybrid approach based on CNN, combining 2D depthwise separable convolution (DSC) with a conventional 2D CNN and a Squeeze-and-Excitation network (SENet). The inclusion of SENet aims to boost classification performance without significantly increasing the overall parameter count. By integrating 2D DSC, computational costs and the number of trainable parameters are notably reduced. The multipath network structure’s core purpose is to amplify the extracted features from UAV-derived images. The effectiveness of this multipath hybrid approach was evaluated using an orthophoto from Harran University’s campus captured by a UAV. The primary goal was to distinguish between mature and immature lavender plants. The results indicate a high accuracy, with immature lavender plants classified at 99.77% accuracy and mature lavender plants at 95.15% accuracy. These findings from experimental studies demonstrate the high effectiveness of our hybrid method in identifying immature lavender plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data will be made available on request.

References

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

İ. A. Investigation, Methodology, Writing – original draft, Writing – review & editing, Conceptualization, Resources. N. P. Data collection, Analysis, Writing – review & editing, Supervision, Validation.

Corresponding author

Correspondence to İlyas Aslan.

Ethics declarations

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Communicated by: H. Babaie

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, İ., Polat, N. Deep learning-based classification of mature and immature lavender plants using UAV orthophotos and a hybrid CNN approach. Earth Sci Inform 17, 1713–1727 (2024). https://doi.org/10.1007/s12145-023-01200-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-01200-7

Keywords

Navigation