Skip to main content

Advertisement

Log in

Flash-flood susceptibility mapping: a novel credal decision tree-based ensemble approaches

  • RESEARCH
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Escalation in flash floods and the enhanced devastations, especially in the arid and semiarid regions of the world has required precise mapping of the flash flood susceptible zones. In this study, we applied six novel credal decision tree (CDT)-based ensemble models—1. CDT, 2. CDT Alternative Decision Tree (ADTree), 3. CDT- Reduced Error Pruning Tree (REPT), 4. CDT- Rotational Forest (RF), 5. CDT-FT, 6. CDT- Naïve Bias Tree (NBTree). For preparing the flash flood susceptibility maps (FFSM), 206 flood locations were selected in the Neka-roud watershed of Iran with 70% as training data and 30% as testing data. Moreover, 18 flood conditing factors were considered for FFSM and a multi-colinearity test was performed for determining the role of the factors. Our results show that the distance from the stream plays a vital role in flash floods. The CDT-FT is the best-fit model out of the six novel algorithms employed in this study as demonstrated by the highest values of the area under the curve (AUC) of the receiver operating curve (ROC) (AUROC 0.986 for training data and 0.981 for testing data). Our study provides a novel approach and useful tool for flood management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data used in this research are available by the corresponding author upon reasonable request.

References

  • Abellán J, Moral S (2003) Building classification trees using the total uncertainty criterion. Int J Intell Syst 18(12):1215–1225

    Google Scholar 

  • Alam A, Ahmed B, Sammonds P (2021) Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quat Int 575–576:295–307

    Google Scholar 

  • Alarifi SS, Abdelkareem M, Abdalla F, Alotaibi M (2022) Flash flood hazard mapping using remote sensing and GIS techniques in Southwestern Saudi Arabia. Sustainability 14(21):14145

    Google Scholar 

  • Aldhshan SR, Mohammed OZ, Shafri HM (2019) Flash flood area mapping using sentinel-1 SAR data: a case study of eight upazilas in Sunamganj district, Bangladesh. In IOP Conference Series: Earth Environ Sci, 357(1):012034. IOP Publishing

  • AlMahasneh L, Abuhamoor D, Al Sane K, Haddad NJ (2021) Assessment and mapping of flash flood hazard severity in Jordan. Int J River Basin Manage, 1–15

  • Arabameri A, Karimi-Sangchini E, Pal SC et al (2020a) Novel credal decision tree-based ensemble approaches for predicting the landslide susceptibility. Remote Sens 12:3389

    Google Scholar 

  • Arabameri A, Sadhasivam N, Turabieh H et al (2021a) Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management. Sci Rep 11:31–47

    Google Scholar 

  • Arabameri A, Sadhasivam N, Turabieh H, Mafarja M, Rezaie F, Pal SC, Santosh M (2021b) Credal decision tree based novel ensemble models for spatial assessment of gully erosion and sustainable management. Sci Rep 11(1):3147

    Google Scholar 

  • Arabameri A, Saha S, Roy J, Chen W, Blaschke T, Tien Bui D (2020b) Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed. Iran Remote Sens 12:475

    Google Scholar 

  • Cao C, Xu P, Wang Y, Chen J, Zheng L, Niu C (2016) Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas. Sustainability 8(9):948

    Google Scholar 

  • Chakrabortty R, Chandra Pal S, Rezaie F, Arabameri A, Lee S, Roy P, Moayedi H (2022) Flash-flood hazard susceptibility mapping in Kangsabati River Basin India. Geocarto Int 37(23):6713–6735

    Google Scholar 

  • Ching J, Phoon K-K (2023) Quantile value method versus design value method for calibration of reliability-based geotechnical codes. Struct Saf 44:47–58

    Google Scholar 

  • Chapi K, Singh VP, Shirzadi A, Shahabi H, Bui DT, Pham BT, Khosravi K (2017) A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ Model Softw 95:229–245

    Google Scholar 

  • Dash P, Mukherjee K, Ghosh S (2022) Flash flood susceptibility mapping of a himalayan river basin using multi‐criteria decision‐analysis and GIS. Advances in Remote Sensing Technology and the Three Poles, 257–267

  • Dang P, Cui J, Liu Q, Li Y (2023) Influence of source uncertainty on stochastic ground motion simulation: a case study of the 2022 Mw 66 Luding, China, earthquake. Stochastic Environ Res Risk Assess. https://doi.org/10.1007/s00477-023-02427-y

    Article  Google Scholar 

  • Derbyshire E, Hails JR, Gregory KJ (2013) Geomorphological processes: Studies in Physical Geography. Elsevier

  • Elkhrachy I (2015) Flash flood hazard mapping using satellite images and GIS tools: a case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt J Remote Sens Space Sci 18(2):261–278

    Google Scholar 

  • Freund Y, Mason L (1999) The alternating decision tree learning algorithm. ICML. 124–133

  • Gao BC (1996) NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266

    Google Scholar 

  • Gao C, Zhang B, Shao S, Hao M, Zhang Y, Xu Y, Wang Z (2023) Risk assessment and zoning of flood disaster in Wuchengxiyu Region China. Urban Clim 49:101562. https://doi.org/10.1016/j.uclim.2023.101562

    Article  Google Scholar 

  • Ghosh S, Roy S, Islam A, Shit PK, Datta DK, Islam MS, Das BC (2023) Floods of ganga-brahmaputra-meghna delta in context. Floods in the Ganga–Brahmaputra–Meghna Delta. Springer International Publishing, Cham, pp 1–17

    Google Scholar 

  • Gudiyangada Nachappa T, Kienberger S, Meena SR, Hölbling D, Blaschke T (2020) Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomat Nat Hazards Risk 11:572–600

    Google Scholar 

  • Gui J, Pérez-Rey I, Yao M, Zhao F, Chen W (2023a) Credal- decision-tree-based ensembles for spatial prediction of landslides. Water 15:605. https://doi.org/10.3390/w15030605

    Article  Google Scholar 

  • Gui J, Pérez-Rey I, Yao M, Zhao F, Chen W (2023b) Credal-decision-tree-based ensembles for spatial prediction of landslides. Water 15:605. https://doi.org/10.3390/w15030605

    Article  Google Scholar 

  • Hamid RAHA (2013) Application of morphometric analysis for geo-hydrological studies using geo-spatial technology—a case study of vishav drainage basin. J Waste Water Treat Anal 4:1–12

    Google Scholar 

  • He Q, Xu Z, Li S, Li R, Zhang S, Wang N, Pham BT, Chen W (2019) Novel entropy and rotation forest-based credal decision tree classifier for landslide susceptibility modeling. Entropy 21(2):106

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Google Scholar 

  • Huang S, Lyu Y, Sha H, Xiu L (2021) Seismic performance assessment of unsaturated soil slope in different groundwater levels. Landslides 18(8):2813–2833. https://doi.org/10.1007/s10346-021-01674-w

    Article  Google Scholar 

  • Islam A, Ghosh S (2022) Community-based riverine flood risk assessment and evaluating its drivers: evidence from Rarh Plains of India. Appl Spat Anal Policy 15(1):1–47

    Google Scholar 

  • Islam ARMT, Talukdar S, Mahato S, Kundu S, Eibek KU, Pham QB, Linh NTT (2021) Flood susceptibility modelling using advanced ensemble machine learning models. Geosci Front 12(3):101075

    Google Scholar 

  • Kariminejad N, Hosseinalizadeh M, Pourghasemi HR, Bernatek-Jakiel A, Campetella G, Ownegh M (2019) Evaluation of factors affecting gully headcut location using summary statistics and the maximum entropy model: Golestan Province. NE Iran Sci Tot Env 677:281–298. https://doi.org/10.1016/j.scitotenv.2019.04.306

    Article  Google Scholar 

  • Khosravi K, Pham BT, Chapi K et al (2018) A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Sci Tot Env 627(218):744–755

    Google Scholar 

  • Kohavi R (1996) Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. Kdd, pp. 202–207

  • Lu Y, Bookman R, Waldmann N, Marco S (2020) A 45 kyr laminae record from the Dead Sea: Implications for basin erosion and floods recurrence. Quat Sci Rev 229:106143

    Google Scholar 

  • Li J, Wang Z, Wu X, Xu C, Guo S, Chen X (2020) Toward monitoring short-term droughts using a novel daily scale, standardized antecedent precipitation evapotranspiration index. J Hydrometeorol 21(5):891–908. https://doi.org/10.1175/JHM-D-19-0298.1

    Article  Google Scholar 

  • Li W, Zhu J, Fu L, Zhu Q, Xie Y, Hu Y (2021) An augmented representation method of debris flow scenes to improve public perception. Int J Geograph Inf Sci 35(8):1521–1544. https://doi.org/10.1080/13658816.2020.1833016

    Article  Google Scholar 

  • Li T, Xia T, Wang H, Tu Z, Tarkoma S, Han Z, Hui P (2022) Smartphone app usage analysis: datasets, methods, and applications. IEEE Comm Surv Tutor 24(2):937–966. https://doi.org/10.1109/COMST.2022.3163176

    Article  Google Scholar 

  • Li Q, Song D, Yuan C, Nie W (2022) An image recognition method for the deformation area of open-pit rock slopes under variable rainfall. Measurement 188:110544. https://doi.org/10.1016/j.measurement.2021.110544

    Article  Google Scholar 

  • Liu Z, Feng J, Uden L (2023) From technology opportunities to ideas generation via cross-cutting patent analysis: Application of generative topographic mapping and link prediction. Technol Forecast Soc Change 192:122565. https://doi.org/10.1016/j.techfore.2023.122565

    Article  Google Scholar 

  • McBride JL, Ebert EE (2000) Verification of quantitative precipitation forecasts from operational numerical weather prediction models over Australia. Weather Forecast 15:103–121

    Google Scholar 

  • Moore ID, Wilson JP (1992) Length-slope factors for the revised universal soil loss equation: simplified method of estimation. J Soil Water Conserv 47(5):423–428

    Google Scholar 

  • NASA Earth Observatory (2023). Flash Flooding in Iran. https://earthobservatory.nasa.gov/images/146150/flash-flooding-in-iran. Accessed 20 Apr 2023

  • Nguyen PT, Ha DH, Nguyen HD, Van Phong T, Trinh PT, Al-Ansari N, Prakash I (2020) Improvement of credal decision trees using ensemble frameworks for groundwater potential modeling. Sustainability 12(7):2622

    Google Scholar 

  • Nguyen VT, Tran T, Ha N, Ngo VL, Al-Ansari N, Van Phong T, Nguyen DH, Malek M, Amini A, Prakash I et al (2019) GIS based novel hybrid computational intelligence models for mapping landslide susceptibility: A Case Study at Da Lat City. Vietnam Sustainability 11:7118

    Google Scholar 

  • Nhu VH, Ngo PTT, Pham TD, Dou J, Song X, Hoang ND, Tran DA, Cao DP, Aydilek İB, Amiri M, Costache R, Hoa PV, Tien BD (2020) A New hybrid firefly–PSO optimized random subspace tree intelligence for torrential rainfall- induced flash flood susceptible mapping. Remote Sens 12(7):2688. https://doi.org/10.3390/rs12172688

    Article  Google Scholar 

  • Peptenatu D, Grecu A, Simion AG, Gruia KA, Andronache I, Draghici CC, Diaconu DC (2020) Deforestation and frequency of floods in romania.water resour manag romania. Springer, pp. 279–306

  • Pourghasemi H, Pradhan B, Gokceoglu C, Mohammady M, Moradi H (2013) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed. Iran Arab J Geosci 6(7):2351–2365

    Google Scholar 

  • Pham BT, Avand M, Janizadeh S, Phong TV, Al-Ansari N, Ho LS, Das S, Le HV, Amini A, Bozchaloei SK (2020) GIS based hybrid computational approaches for flash flood susceptibility assessment. Water 12(3):683

    Google Scholar 

  • Pham BT, Prakash I, Singh SK, Shirzadi A, Shahabi H, Bui DT (2019) Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: hybrid machine learning approaches. CATENA 175:203–218

    Google Scholar 

  • Polo JL, Berzal F, Cubero JC (2008) Class-oriented reduction of decision tree complexity. International Symposium on Methodologies for Intelligent Systems. Springer, pp. 48–57

  • Poudyal CP, Chang C, Oh HJ, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61(5):1049–1064

    Google Scholar 

  • Pouyan S, Pourghasemi HR, Bordbar M, Rahmanian S, Clague JJ (2021) A multi-hazard map-based flooding, gully erosion, forest fires, and earthquakes in Iran. Sci Rep 11(1):1–19

    Google Scholar 

  • Pradhan B (2010) Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing. J Spat Hydrol 9

  • Qi M, Cui S, Chang X, Xu Y, Meng H, Wang Y, Arif M (2022) Multi-region nonuniform brightness correction algorithm based on l-channel gamma transform. Security and communication networks, 2022. https://doi.org/10.1155/2022/2675950

  • Rahmati O, Pourghasemi HR, Zeinivand H (2016) Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province. Iran Geocarto Int 31(1):42–70

    Google Scholar 

  • Rodríguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: A new classifier ensemble method. IEEE Trans Pattern Anal 28:1619–1630

    Google Scholar 

  • Saha UD, Bhattacharya S (2020) Application of multi-criteria decision-making approach for ascertaining the avulsion potentiality of the Torsa River course; Model Earth Syst Environ https://doi.org/10.1007/s40808-020-00967-8

  • Saleh, A., Yuzir, A., & Abustan, I. (2020). Flash flood susceptibility modelling: A review. In IOP Conference Series: Materials Science and Engineering.712(1):012005. IOP Publishing

  • Saleh A, Yuzir A, Sabtu N, Abujayyab SK, Bunmi MR, Pham QB (2022) Flash flood susceptibility mapping in urban area using genetic algorithm and ensemble method. Geocarto Int, 1–30

  • Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597–646

    Google Scholar 

  • Shahabi H, Shirzadi A, Ronoud S, Asadi S, Pham BT, Mansouripour F, Bui DT (2021) Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geoscience Frontiers 12(3):101100

    Google Scholar 

  • Shahabi H, Shirzadi A, Ronoud S et al (2021b) Flash flood susceptibility mapping using a novel deep learning model based on deep belief network, back propagation and genetic algorithm. Geosci Fronts 12(2021):101100

    Google Scholar 

  • Shirzadi A, Bui DT, Pham BT, Solaimani K, Chapi K, Kavian A, Shahabi H, Revhaug I (2017) Shallow landslide susceptibility assessment using a novel hybrid intelligence approach. Environ Earth Sci 76(2):60

    Google Scholar 

  • Singh N, Vangani NS, Sharma JR (1993) Flash flood damage mapping in arid environment using satellite remote sensing—a case study of Pali region. J Ind Soc Remote Sens 21:75–86

    Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environ Geol 45:665–679

    Google Scholar 

  • Tariq A, Yan J, Ghaffar B, Qin S, Mousa BG, Sharifi A, Aslam M (2022) Flash flood susceptibility assessment and zonation by integrating analytic hierarchy process and frequency ratio model with diverse spatial data. Water 14(19):3069

    Google Scholar 

  • Tehrany MS, Pradhan B, Jebur MN (2015) Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stoch Env Res Risk A 29(4):1149–1165

    Google Scholar 

  • Termeh SVR, Khosravi K, Sartaj M, Keesstra SD, Tsai FTC, Dijksma R, Pham BT (2019) Optimization of an adaptive neuro-fuzzy inference system for groundwater potential mapping. Hydrogeol J 27:2511–2534

    Google Scholar 

  • Tien Bui D, Ngo PTT, Pham TD, Jaafari A, Minh NQ, Hoa PV, Samui P (2019) A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena 179:184–196

    Google Scholar 

  • Tien Bui D, Pradhan B, Lofman O, Revhaug I (2012) Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and naive bayes models. Math Probl Eng 2012

  • Torcivia CEG, López NNR (2020) Preliminary Morphometric analysis: río talacasto basin, central precordillera of San Juan, Argentina. Advances in Geomorphology and Quaternary Studies in Argentina. Springer, Cham, pp. 158–168

  • Wang S, Jiang L, Li C (2015) Adapting naive Bayes tree for text classification. Knowl Inf Syst 44(1):77–89

    Google Scholar 

  • Wang Y, Hong H, Chen W, Li S, Pamučar D, Gigović L, Duan H (2019) A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou. China Remote Sens 11(1):62

    Google Scholar 

  • Wang Y, Xu N, Liu A, Li W, Zhang Y (2022) High-Order interaction learning for image captioning. IEEE Trans Circuits Syst Video Technol 32(7):4417–4430. https://doi.org/10.1109/TCSVT.2021.3121062

    Article  Google Scholar 

  • Wang S, Hu X, Sun J, Liu J (2023a) Hyperspectral anomaly detection using ensemble and robust collaborative representation. Inf Sci 624:748–760. https://doi.org/10.1016/j.ins.2022.12.096

    Article  Google Scholar 

  • Wang Y, Su Y, Li W, Xiao J, Li X, Liu A (2023) Dual-path rare content enhancement network for image and text matching. IEEE Trans Circ Syst Video Technol. https://doi.org/10.1109/TCSVT.2023.3254530

    Article  Google Scholar 

  • Wu X, Guo S, Qian S, Wang Z, Lai C, Li J, Liu P (2022) Long-range precipitation forecast based on multipole and preceding fluctuations of sea surface temperature. Int J Climatol 42(15):8024–8039. https://doi.org/10.1002/joc.7690

    Article  Google Scholar 

  • Xie X, Xie B, Cheng J, Chu Q, Dooling T (2021) A simple Monte Carlo method for estimating the chance of a cyclone impact. Nat Hazards 107(3):2573–2582. https://doi.org/10.1007/s11069-021-04505-2

    Article  Google Scholar 

  • Yang J, Fu LY, Zhang Y et al (2022) Temperature- and pressure-dependent pore microstructures using static and dynamic moduli and their correlation. Rock Mech Rock Eng 55:4073–4092. https://doi.org/10.1007/s00603-022-02829-4

    Article  Google Scholar 

  • Yesilnacar EK (2005) The application of computational intelligence to landslide susceptibility mapping in Turkey. Ph.D. thesis, Department of Geomatics, University of Melbourne

  • Yin L, Wang L, Zheng W, Ge L, Tian J, Liu Y, Liu S (2022) Evaluation of empirical atmospheric models using swarm-C Satellite Data. Atmosphere 13(2):294. https://doi.org/10.3390/atmos13020294

    Article  Google Scholar 

  • Yin Y, Zhang X, Guan Z, Chen Y, Liu C, Yang T (2023) Flash flood susceptibility mapping based on catchments using an improved Blending machine learning approach. Hydrol Res. 54(4):557–579

    Google Scholar 

  • Yin L, Wang L, Tian J, Yin Z, Liu M, Zheng W (2023) Atmospheric density inversion based on swarm-C satellite accelerometer. Appl Sci 13(6):3610. https://doi.org/10.3390/app13063610

    Article  Google Scholar 

  • Yue Z, Zhou W, Li T (2021) Impact of the indian ocean dipole on evolution of the subsequent ENSO: relative roles of dynamic and thermodynamic processes. J Clim 34(9):3591–3607. https://doi.org/10.1175/JCLI-D-20-0487.1

    Article  Google Scholar 

  • Zhang Y, Luo J, Zhang Y, Huang Y, Cai X, Yang J, Zhang Y (2022) Resolution enhancement for large-scale real beam mapping based on adaptive low-rank approximation. IEEE Trans Geosci Remote Sens 60:1–21. https://doi.org/10.1109/TGRS.2022.3202073

    Article  Google Scholar 

  • Zhang C, Yin Y, Yan H, Zhu S, Li B, Hou X, Yang Y (2022) Centrifuge modeling of multi-row stabilizing piles reinforced reservoir landslide with different row spacings. Landslides. https://doi.org/10.1007/s10346-022-01994-5

    Article  Google Scholar 

  • Zhao L, Wang L (2022) A new lightweight network based on MobileNetV3. KSII Trans Internet Inf Syst 16:1–15

    Google Scholar 

  • Zhou G, Zhang R, Huang S (2021) Generalized buffering algorithm. IEEE Access 9:27140–27157. https://doi.org/10.1109/ACCESS.2021.3057719

    Article  Google Scholar 

  • Zhou J, Wang L, Zhong X, Yao T, Qi J, Wang Y, Xue Y (2022) Quantifying the major drivers for the expanding lakes in the interior tibetan plateau. Sci Bull 67(5):474–478. https://doi.org/10.1016/j.scib.2021.11.010

    Article  Google Scholar 

  • Zhou G, Song B, Liang P, Xu J, Yue T (2022b) Voids filling of DEM with multiattention generative adversarial network model. Remote Sensing (basel, Switzerland) 14(5):1206. https://doi.org/10.3390/rs14051206

    Article  Google Scholar 

  • Zhou L, Ye Y, Tang T, Nan K, Qin Y (2022c) Robust matching for SAR and optical images using multiscale convolutional gradient features. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3105567

    Article  Google Scholar 

  • Zhuo Z, Du L, Lu X, Chen J, Cao Z (2022) Smoothed Lv distribution based three-dimensional imaging for spinning space debris. IEEE Trans Geosci Remote Sens 60:1–13. https://doi.org/10.1109/TGRS.2022.3174677

    Article  Google Scholar 

  • Zhu X, Xu Z, Liu Z, Liu M, Yin Z, Yin L, Zheng W (2022) Impact of dam construction on precipitation: a regional perspective. Mar Freshw Res. https://doi.org/10.1071/MF22135

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, A.A., D.Y.; methodology, A.A., D.Y., and T.Z.; software, A.A.; validation, A.A.; formal analysis, A.A and T.Z.; investigation, A.A. and M.S.; resources, A.A. and M.S.; data curation, A.A.; writing—original draft preparation, A.A., D.Y., M.S., U.D.S., and A.I.; writing—review and editing, T.Z., A.A., D.Y., M.S., U.D.S., and A.I.; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ting Zhang.

Ethics declarations

Ethical approval

The authors confirm that this article is original research and has not been published or presented previously in any journal or conference in any language (in whole or in part).

Consent to participate

Not applicable.

Competing interests

The authors have no conflict of interest.

Additional information

Communicated by: H. Babaie

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, D., Zhang, T., Arabameri, A. et al. Flash-flood susceptibility mapping: a novel credal decision tree-based ensemble approaches. Earth Sci Inform 16, 3143–3161 (2023). https://doi.org/10.1007/s12145-023-01057-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-023-01057-w

Keywords

Navigation