Skip to main content
Log in

Sub pixel mapping of alteration minerals using SOM neural network model and hyperion data

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

This study applies the self-organizing map (SOM) neural network model for sub pixel mapping of alteration minerals in the Masahim volcano, SE Iran, using Hyperion data. Four end-members including sericite, kaolinite, epidote, and montmorillonite/illite were identified from the imagery, and based on these end-members training areas were generated and used to train the model. Numerous tests were conducted for selecting the optimal neural network architecture. The confusion matrix was calculated to identify the accuracy of map produced by SOM. The confusion matrix indicated that among the different SOM architectures, the result of 55 × 55 array of nodes with overall accuracy of 83 % was the best architecture for describing the spatial distribution of alteration unit. The coefficient of determination (R2) was also calculated to assess the accuracy of sub pixel fraction maps. The R2 coefficient was 0.60 for kaolinite, 0.72 for sericite, 0.58 for epidote and 0.62 for montmorillonite/illite .The mapping results revealed that kaolinite, sericite and montmorillonite/illite are emplaced in the caldera of the volcano and epidote is mainly found at the northwestern part of caldera. It can be concluded that the SOM is useful in mineral mapping and exploration activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmadipour H (1994) Dynamism of Volcanic Activities in Mosahim volcano (Shahr-e-Babak). Dissertation, Department of Geology, Shahid Bahonar Univerity, Kerman, Iran: p 366

  • Alavi M (1980) Tectono-stratigraphic evolution to the Zagros sides of Iran. Geology 8:144–149. doi:10.1130/0091-7613(1980)8

    Article  Google Scholar 

  • Aydal D, Ardal E, Dumanlilar O (2007) Application of the crosta technique for alteration mapping of granitoidic rocks using ETM+ data: case study from eastern tauride belt (SE turkey). Int. J Remote Sens 28:3895–3913. doi:10.1080/01431160601105926

    Article  Google Scholar 

  • Barry P (2001) EO-1/Hyperion Science Data User’s Guide, Level 1B. TRW Space, Defense and Information systems. Redondo Beach: CA. CAGE Number 11892: p60

  • Beck R (2003) EO-1 User guide, V.2.3. Available online at http://eo1.usgs.gov and http://eo1.usgs.gov/documents.php (accessed 21 January 2008). University of Cincinnati, Ohio

  • Bedini E (2009) Mapping lithology of the Sarfartoq carbonatite complex, southern West Greenland, using HyMap imaging spectrometer data. Remote Sens Environ 13:1208–1219. doi:10.1016/j.rse.2009.02.007

    Article  Google Scholar 

  • Bedini E (2012) Mapping alteration minerals at malmbjerg molybdenum deposit, central east Greenland, by kohonen self-organizing maps and matched filter analysis of HyMap data. Int J Remote Sens 33:939–961. doi:10.1080/01431161.2010.542202

    Article  Google Scholar 

  • Bian Z, Zhang X (2000) Pattern Recognition. Tsinghua University Press, Beijing

    Google Scholar 

  • Boardman JW, Kruse FA (1994) Automated spectral analysis: A geologic example using AVIRIS data, north Grapevine Mountains, Nevada. in Proceedings, Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor MI: I-407 - I-418

  • Boardman JW, Kruse FA, Green RO (1995) Mapping target signatures via partial unmixing of AVIRIS data. In: summaries, fifth JPL airborne earth science workshop, January23-26, Pasadena, JPL. Publication 95–1(1)

  • Chen JY, Reed IS (1987) A detection algorithm for optical targets in clutter. IEEE Trans Aerosp Electron Syst AES-23(1):46–59. doi:10.1109/TAES.1987.313335

    Article  Google Scholar 

  • Clark RN, Swayze GA, Gallagher A, King TVV, Calvin WM (1993) The U.S. geological survey digital spectral library: Version 1: 0.2 to 3.0 um.” USGS Open File Report 93–592, U.S. Geological Survey, p1340

  • Crosta AP, McMoore J (1989) Enhancement of Landsat Thematic Mapper imagery for residual soil mapping in SW Minas Gerais State, Brazil: a prospecting case history in greenstone belt terrain.” In: Seventh Thematic Conference on Remote Sensing for Exploration Geology, Calgary, Alberta, Canada: Erim

  • Crowley JK, Hubbard BE, Mars JC (2003) Analysis of potential debris flow source areas on mount Shasta, California, by using airborne and satellite remote sensing data. Remote Sens Environ 87:345–358. doi:10.1016/j.rse.2003.08.003

    Article  Google Scholar 

  • Cudahy TJ, Hewson R, Huntington JF, Quigley MA, Barry PS (2001) The Performance of the Satellite borne Hyperion Hyperspectral VNIR-SWIR Imaging System for Mineral Mapping at Mount Fitton. South Australia, CSIRO EOC Annual Science Meeting, Canberra

    Book  Google Scholar 

  • Cudahy T, Hewson R (2002) ASTER geological case histories: porphyry-skarnepithermal, iron oxide Cu-Au and Broken hill Pb-Zn-Ag. In: Annual General Meeting of the Geological Remote Sensing Group ‘ASTER Unveiled’, Burlington House, Piccadilly, London, UK

  • Dimitrijevic M (1973) Geology of Kerman region. (Iran Geological Survey Report No. Yu/52.) Institute for Geological and Mining Exploration and Institution of Nuclear and Other Mineral Raw Materials, Beograd, Yugoslavia

  • DuBose P, Klimasauskas C (1989) Introduction to Neural Networks with Examples and Applications. NeuralWare Inc., Pittsburgh

    Google Scholar 

  • Emaruchi B, Jin Y, Sauchyn D, Fuller G (1997) Estimation of runoff index using Landsat (TM) data and an artificial neural network system. Can Water Resour J 22:155–166. doi:10.4296/cwrj2202155

    Article  Google Scholar 

  • Filippi A, Dobreva I, Klein AG, Jensen JR (2010) Self-Organizing Map-based Applications in Remote Sensing, Self-Organizing Maps. George K Matsopoulos (Ed.), ISBN: 978-953-307-074-2, InTech. http://www.intechopen.com/articles/show/title/self-organizing-map-based-applications-in-remote-sensing

  • Förster H, Fesefeldt K, Kursten M (1972) Magmatic and orogenic evolution of the Central Iranian volcanic belt.” 24th International Geology Congress: Section, 2: p. 198–210

  • Geological Survey of Iran (1973) Geological Map of Shahr-e-Babak. 1:100000 SHEET 7050

  • Grebby S, Cunningham D, Naden J, Tansey K (2010) Lithological mapping of the Troodos ophiolite, Cyprus, using airborne LiDAR topographic data. Remote Sens Environ 14:24–724. doi:10.1016/j.rse.2009.11.006

    Google Scholar 

  • Green AA, Berman M, Switzer P, Craig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26(1):65–74. doi:10.1109/36.3001

    Article  Google Scholar 

  • Harsanyi JC, Chang CI (1994) Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens 32:779–785. doi:10.1109/36.298007

    Article  Google Scholar 

  • Hassanzadeh J (1993) Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Keman Province). Dissertation, University of California, Los Angeles, Los Angeles, p. 204

  • Hu X, Weng Q (2009) Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks. Remote Sens Environ 13:2089–2102. doi:10.1016/j.rse.2009.05.014

    Article  Google Scholar 

  • Hubbard BE, Sheridan MF, Carrasco-Núñez G, Díaz-Castellón R, Rodríguez SR (2007) Comparative lahar hazard mapping at Volcan Citlaltépetl, Mexico using SRTM, ASTER and DTED-1 digital topographic data. J Volcanol Geotherm Res 160:99–124. doi:10.1016/j.jvolgeores.2006.09.005

    Article  Google Scholar 

  • Hunt GR, Salisbury JW (1970) Visible and near-infrared spectra of minerals and rocks, I. Silicate minerals. Mod Geol 1:283–300

  • Spectronics I (1999) Pima View v3.1, User Manual. In: Ltd. ISP, editor. Document Ref No ISPL-PV-31–01. Baulkan Hills, NSW, Australia, p 102

    Google Scholar 

  • Ji CY (2000) Land-use classification of remotely sensed data using Kohonen self organizing feature map neural networks. Photogramm. Eng. Remote Sens J 66: 1451–1460. doi: 0099-111210016612-1451$3.0010

  • Joyce K, Samsonov S, Manville V, Jorgens R, Graettinger A, Cronin S (2009) Remote sensing data types and techniques for lahar path detection: A case study at Mt Ruapehu, New Zealand. Remote Sens Environ 113:1778–1786. doi:10.1016/j.rse.2009.04.001

    Article  Google Scholar 

  • Kangas JA, Kohonen TK, Laaksonem JT (1990) Variants of self-organizing maps. IEEE Trans. Neural Netw 1:93–99. doi:10.1109/72.80208

    Article  Google Scholar 

  • Kohonen T (1990) The self-organizing Map. Proc IEEE 78:1464–1480

    Article  Google Scholar 

  • Kohonen T (1995) Self-Organizing Maps. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Kruse FA, Richardson LL, Ambrosia VG (1997) Techniques developed for geologic analysis of hyperspectral data applied to near-shore hyperspectral ocean data: In Proceedings, ERIM 4th International Conference, Remote Sensing for Marine and Coastal Environments: Environmental Research Institute of Michigan (ERIM), Ann Arbor, v. I, p. I-233 - I-246

  • Kruse FA, Boardman JW, Hunnington JF (2003) Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE trans. Geosci. Remote Sens 41:1388–1400. doi:10.1109/TGRS.2003.812908

    Article  Google Scholar 

  • Kruse FA, Perry SL (2007) Regional Mineral Mapping By Extending Hyperspectral Signatures Using Multispectral Data: in Proceedings, 2007 I.E. AeroSpace Conference, (peer-reviewed), March 3 – 10; Big Sky; Montana; On CD-ROM, IEEE Catalog Number 07TH8903C, ISBN: 1-4244-0525-4

  • Lee S, Lathrop RG (2006) Subpixel analysis of Landsat ETM+ using Self-Organizing Map (SOM) neural networks for urban land cover characterization. IEEE Trans. Geosci. Remote Sens 44:1642–1654. doi:10.1109/TGRS.2006.869984

    Article  Google Scholar 

  • Li Z, Eastman JR (2006) The nature and classification of unlabelled neurons in the use of Kohonen's self-organizing map for supervised classification. Trans GIS 10:599–613. doi:10.1111/j.1467-9671.2006.01014.x

    Article  Google Scholar 

  • Mather PM (1999) Computer Processing of Remotely Sensed Images: An introduction, 2nd edn. Wiley, New York

    Google Scholar 

  • McCubbin I, Green R, Lang H, Roberts D (1998) Mineral Mapping Using Partial Unmixing at Ray Mine, AZ. Summaries of the 8th JPL Airborne Earth Science Workshop, JPL Publication 97–21, 4 p

  • Moody A, Gopal S, Strahler AH (1996) Artificial neural network response to mixed pixels in coarse-resolution satellite data. Remote Sens Environ 58:329–343. doi:10.1016/S0034-4257(96)00107-1

    Article  Google Scholar 

  • Murray HH, Lyon SC (1960) Further correlation of kaolinite erystallinity with chemical and physical properties: Clays and Clay Minerals. Prec. 8th Conf, Pergamon Press, New York

  • Research Systems Inc (2003) ENVI Tutorial, ENVI Software Package Version 4.0

  • Rivard B (1989) Mapping ophiolitic melanges of the central eastern desert of Egypt using mixing model applied to Landsat Thematic Mapper data. Symposium volume of the Seventh Thematic conference on remote sensing for exploration geology, Calgary, pp 847–859

    Google Scholar 

  • Rowan LC, Wetlaufer PH, Goetz AFH, Billingsley FC, Stewart JH (1974) Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by use of computer-enhanced ERTS images. US Geological Survey Professional, Paper, 883

  • Tangestani MH, Moore F (2001) Comparison of three principal component analysis techniques to porphyry copper alteration mapping: a case study, Meiduk area, Kerman, Iran. Can. J. Remote Sens 27:176–182

    Google Scholar 

  • Tso B, Mather PM (2001) Classification Methods for Remotely Sensed Data. Taylor and Francis, New York, p332

    Book  Google Scholar 

  • Ungar SG (2001) Overview of EO-1, the first 120 days. Proceedings IGARSS’01, Sydney, Australia

  • Ungar SG, Pearlman JS, Mendenhall JA, Reuter D (2003) Overview of the Earth Observing One (EO-1) Mission. IEEE Trans. Geosci. Remote Sens 41:1149–1159. doi:10.1080/01431169508954622

    Article  Google Scholar 

  • Van der Meer F (1995) Spectral unmixing of landsat thematic mapper data. Int J Remote Sens 16:3186–3194. doi:10.1080/01431169508954622

    Article  Google Scholar 

  • Van der Meer F, Vasquez-Torres M, Van Dijk PM (1997) Spectral characterization of ophiolite lithologies in the troodos ophiolite complex of Cyprus and its potential in prospecting for massive sulphide deposits. Int J Remote Sens 18:1245–1257. doi:10.1080/014311697218395

    Article  Google Scholar 

  • Villmanna T, Mere´nyib E, Hammerc B (2003) Neural maps in remote sensing image analysis. Neural Networks 16:389–403. doi:10.1016/S0893-6080(03)00021-2

    Article  Google Scholar 

  • Vincent RK (1972) An ERTS multispectral scanner experiment for mapping iron compounds”. international symposium on remote sensing of environment. 8th. Ann Arbor, University of Michigan, Proceedings 2:1239–1247

    Google Scholar 

  • Vincent RK (1997) Fundamentals of Geological and Environmental Remote Sensing. Prentice Hall Upper Saddle River, New Jersey

    Google Scholar 

  • Zhuang X, Engel BA, Baumgardner MF, Swain PH (1991) Improving classification of crop residues using digital land ownership data and Landsat TM imagery. Photogramm. Eng Remote Sens J 57:1487–1492

    Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the constructive suggestions received from the JESI’s editor, and two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad H. Tayebi.

Additional information

Communicated by: N. Patel

Published in the Special Issue; Remote Sensing and Geology "Surveying the GEOsphere"; with Guest Editors Dr. Konstantinos Nikolakopoulus, Dr. Cornelia Glaesser and Dr. Nilanchal Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tayebi, M.H., Tangestani, M.H. Sub pixel mapping of alteration minerals using SOM neural network model and hyperion data. Earth Sci Inform 8, 279–291 (2015). https://doi.org/10.1007/s12145-014-0194-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-014-0194-y

Keywords

Navigation