Skip to main content
Log in

Perception of Spectral Ripples and Speech Perception in Noise by Older Adults

  • Published:
Ageing International Aims and scope Submit manuscript

Abstract

Present study aimed to obtain spectral ripple discrimination threshold in older listeners and to correlate it with their speech perception abilities. In experiment I, fifteen older adults and fifteen young adults with normal hearing sensitivity were tested for spectral ripple discrimination ability in quiet (SRDT) and speech recognition in noise (SNR50). In experiment II, twelve older adults with normal hearing sensitivity were tested for spectral ripple discrimination ability in noise (SNR-SRDT) and SNR50. SRDT and SNR50 of older adults were significantly poorer than young adults. There was a significant negative correlation between SRDT and SNR50 and significant positive correlation between SNR-SRDT and SNR50. Linear regression analysis revealed that SRDT accounted for 21 % of variance in SNR50. Quadratic regression analysis revealed that SNR-SRDT accounted for 63 % of the variance in SNR50. Despite having normal hearing sensitivity, older adults exhibited reduced spectral resolution and poor speech recognition in noise. Poor speech recognition in noise in older adults could be partly due to their spectral resolution abilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abel, S. M., Krever, E. M., & Alberti, P. W. (1990). Auditory detection, discrimination and speech processing in ageing, noise-sensitive and hearing-impaired listeners. Scandinavian Audiology, 19(1), 43–54.

    Article  Google Scholar 

  • Anderson, S., Parbery-Clark, A., White-Schwoch, T., & Kraus, N. (2012). Aging affects neural precision of speech encoding. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(41), 14156–14164. doi:10.1523/JNEUROSCI.2176-12.2012.

    Article  Google Scholar 

  • Assman, P., & Summerfield, Q. (2004). The perception of speech under adverse conditions. New York: Springer.

    Book  Google Scholar 

  • Bergman, M. (1980). Aging and the perception of speech. University Park Press. http://books.google.co.in/books?id=JIdsAAAAMAAJ

  • Caspary, D. M., Holder, T. M., Hughes, L. F., Milbrandt, J. C., McKernan, R. M., & Naritoku, D. K. (1999). Age-related changes in GABA(a) receptor subunit composition and function in rat auditory system. Neuroscience, 93(1), 307–312.

    Article  Google Scholar 

  • Caspary, D. M., Raza, A., Lawhorn Armour, B. A., Pippin, J., & Arnerić, S. P. (1990). Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 10(7), 2363–2372.

    Google Scholar 

  • Caspary, D. M., Schatteman, T. A., & Hughes, L. F. (2005). Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25(47), 10952–10959. doi:10.1523/JNEUROSCI.2451-05.2005.

    Article  Google Scholar 

  • Clinard, C. G., & Tremblay, K. L. (2013). Aging degrades the neural encoding of simple and complex sounds in the human brainstem. Journal of the American Academy of Audiology, 24(7), 590–599 quiz 643–4. doi:10.3766/jaaa.24.7.7.

    Article  Google Scholar 

  • Clinard, C. G., Tremblay, K. L., & Krishnan, A. R. (2010). Aging alters the perception and physiological representation of frequency: evidence from human frequency-following response recordings. Hearing Research, 264(1–2), 48–55. doi:10.1016/j.heares.2009.11.010.

    Article  Google Scholar 

  • Corso, J. F., Wright, H. N., & Valerio, M. (1976). Auditory temporal summation in presbycusis and noise exposure. Journal of Gerontology, 31(1), 58–63.

    Article  Google Scholar 

  • Divenyi, P. L. P., & Simon, H. J. P. (1999). Hearing in aging: issues old and young. Current Opinion in Otolaryngology & Head and Neck Surgery, 7(5), 282–289.

    Article  Google Scholar 

  • Du, Y., Kong, L., Wang, Q., Wu, X., & Li, L. (2011). Auditory frequency-following response: A neurophysiological measure for studying the “cocktail-party problem”. Neuroscience & Biobehavioral Reviews, 35, 2046–2057. doi:10.1016/j.neubiorev.2011.05.008.

    Article  Google Scholar 

  • Dubno, J. R., Dirks, D. D., & Morgan, D. E. (1984). Effects of age and mild hearing loss on speech recognition in noise. The Journal of the Acoustical Society of America, 76, 87–96. doi:10.1121/1.391011.

    Article  Google Scholar 

  • Finney, D. J. (1978). Statistical method in biological assay. Oxford Univ Pr (Txt). http://www.amazon.com/Statistical-Method-Biological-Assay-Finney/dp/0028446402. Accessed 30 November 2013

  • Fitzgibbons, P. J., & Gordon-Salant, S. (1994). Age effects on measures of auditory duration discrimination. Journal of Speech and Hearing Research, 37(3), 662–670.

    Article  Google Scholar 

  • Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.

    Article  Google Scholar 

  • Gates, G. A., Mills, D., Nam, B., D’Agostino, R., & Rubel, E. W. (2002). Effects of age on the distortion product otoacoustic emission growth functions. Hearing Research, 163(1–2), 53–60.

    Article  Google Scholar 

  • Gates, G. A., & Mills, J. H. (2005). Presbycusis. Lancet, 366(9491), 1111–1120. doi:10.1016/S0140-6736(05)67423-5.

    Article  Google Scholar 

  • Gordon-Salant, S., & Fitzgibbons, P. J. (1993). Temporal factors and speech recognition performance in young and elderly listeners. Journal of Speech and Hearing Research, 36(6), 1276–1285.

    Article  Google Scholar 

  • Gordon-Salant, S., & Fitzgibbons, P. J. (1995). Recognition of multiply degraded speech by young and elderly listeners. Journal of Speech and Hearing Research, 38(5), 1150–1156.

    Article  Google Scholar 

  • Greenberg, S. (1996). Auditory processing of speech. In L. NJ (Ed.), Principles of experimental phonetics (pp. 362–401). St-Louis: Mosby Year Book.

    Google Scholar 

  • Grose, J. H., Mamo, S. K., & Hall, J. W. (2009). Age effects in temporal envelope processing: speech unmasking and auditory steady state responses. Ear and Hearing, 30, 568–575. doi:10.1097/AUD.0b013e3181ac128f.

    Article  Google Scholar 

  • He, N., Dubno, J. R., & Mills, J. H. (1998). Frequency and intensity discrimination measured in a maximum-likelihood procedure from young and aged normal-hearing subjects. The Journal of the Acoustical Society of America, 103(1), 553–565.

    Article  Google Scholar 

  • He, N., Mills, J. H., Ahlstrom, J. B., & Dubno, J. R. (2008). Age-related differences in the temporal modulation transfer function with pure-tone carriers. The Journal of the Acoustical Society of America, 124(6), 3841–3849. doi:10.1121/1.2998779.

    Article  Google Scholar 

  • Henry, B. A., Turner, C. W., & Behrens, A. (2005). Spectral peak resolution and speech recognition in quiet: normal hearing, hearing impaired, and cochlear implant listeners. The Journal of the Acoustical Society of America, 118(2), 1111–1121 http://www.ncbi.nlm.nih.gov/pubmed/16158665. Accessed 24 August 2014.

    Article  Google Scholar 

  • Hopkins, K., & Moore, B. (2010a). Development of a fast method for measuring sensitivity to temporal fine structure information at low frequencies. International Journal of Audiology, 49, 940–946.

    Article  Google Scholar 

  • Hopkins, K., & Moore, B. C. J. (2010b). The importance of temporal fine structure information in speech at different spectral regions for normal-hearing and hearing-impaired subjects. Journal of the Acoustical Society of America, 127, 1595–1608. http://www.ncbi.nlm.nih.gov/pubmed/20329859

    Article  Google Scholar 

  • Hopkins, K., & Moore, B. C. J. (2011). The effects of age and cochlear hearing loss on temporal fine structure sensitivity, frequency selectivity, and speech reception in noise. The Journal of the Acoustical Society of America, 130, 334–349. doi:10.1121/1.3585848.

    Article  Google Scholar 

  • Huang, Y., Xu, L., Wu, X., & Li, L. (2010). The effect of voice cuing on releasing speech from informational masking disappears in older adults. Ear and Hearing, 31(4), 579–583. doi:10.1097/AUD.0b013e3181db6dc2.

    Article  Google Scholar 

  • Kumar, A. U., & Sangamanatha, A. V. (2011). Temporal processing abilities across different age groups. Journal of the American Academy of Audiology, 22(1), 5–12. doi:10.3766/jaaa.22.1.2.

    Article  Google Scholar 

  • Leigh-Paffenroth, E. D., & Fowler, C. G. (2006). Amplitude-modulated auditory steady-state responses in younger and older listeners. Journal of the American Academy of Audiology, 17(8), 582–597 http://www.ncbi.nlm.nih.gov/pubmed/16999253. Accessed 23 January 2014.

    Article  Google Scholar 

  • Levitt, H. (1971). ). Transformed up-down methods in psychoacoustics. The Journal of the Acoustical Society of America, 49(Suppl 2), 467+. doi:10.1121/1.1912375.

    Article  Google Scholar 

  • Lister, J., Besing, J., & Koehnke, J. (2002). Effects of age and frequency disparity on gap discrimination. The Journal of the Acoustical Society of America, 111(6), 2793–2800.

    Article  Google Scholar 

  • Lutman, M. E., & Clark, J. (1986). Speech identification under simulated hearing-aid frequency response characteristics in relation to sensitivity, frequency resolution, and temporal resolution. The Journal of the Acoustical Society of America, 80(4), 1030–1040.

    Article  Google Scholar 

  • MATLAB (2004). MATLAB. Natick, MA: The MathWorks Inc..

    Google Scholar 

  • Matschke, R. G. (1990). Frequency selectivity and psychoacoustic tuning curves in old age. Acta Oto-Laryngologica. Supplementum, 476, 114–119.

    Google Scholar 

  • Methi, R., Avinash, & Kumar, A. U. (2009). Development of sentencematerial for quick speech in noise test (quick SIN) in Kannada. Journal of the Indian Speech and Hearing Association, 23(1), 59–65.

    Google Scholar 

  • Ministry of Social Justice and Empowerment. (2007). The Maintenance and Welfare of Parents and Senior Citizens Act. Government of India.

  • Moore, B. C. J., & Glasberg, B. R. (1986). The relationship between frequency selectivity and frequency discrimination for subjects with unilateral and bilateral cochlear impairments. In B. C. J. Moore & R. D. Patterson (Eds.), Auditory frequency selectivity (pp. 407–414). New York: Plenum.

    Chapter  Google Scholar 

  • Moore, B. C. J., Vickers, D. A., & Mehta, A. (2012). The effects of age on temporal fine structure sensitivity in monaural and binaural conditions. International Journal of Audiology, 51(10), 715–721. doi:10.3109/14992027.2012.690079.

    Article  Google Scholar 

  • Moore, B. C., & Peters, R. W. (1992). Pitch discrimination and phase sensitivity in young and elderly subjects and its relationship to frequency selectivity. The Journal of the Acoustical Society of America, 91(5), 2881–2893.

    Article  Google Scholar 

  • Ohlemiller, K. K. (2009). Mechanisms and genes in human strial presbycusis from animal models. Brain Research, 1277, 70–83. doi:10.1016/j.brainres.2009.02.079.

    Article  Google Scholar 

  • Patterson, R. D., Nimmo-Smith, I., Weber, D. L., & Milroy, R. (1982). The deterioration of hearing with age: frequency selectivity, the critical ratio, the audiogram, and speech threshold. The Journal of the Acoustical Society of America, 72(6), 1788–1803.

    Article  Google Scholar 

  • Peter, V., Wong, K., Narne, V. K., Sharma, M., Purdy, S. C., & McMahon, C. (2014). Assessing spectral and temporal processing in children and adults using temporal modulation transfer function (TMTF), iterated ripple noise (IRN) perception, and spectral ripple discrimination (SRD). Journal of the American Academy of Audiology, 25(2), 210–218. doi:10.3766/jaaa.25.2.9.

    Article  Google Scholar 

  • Phillips, S. L., Gordon-Salant, S., Fitzgibbons, P. J., & Yeni-Komshian, G. (2000). Frequency and temporal resolution in elderly listeners with good and poor word recognition. journal of Speech, Language, and Hearing Research: JSLHR, 43(1), 217–228. http://www.ncbi.nlm.nih.gov/pubmed/10668664. Accessed 29 November 2013

  • Pichora-Fuller, M. K., Schneider, B. A., Benson, N. J., Hamstra, S. J., & Storzer, E. (2006). Effect of age on detection of gaps in speech and nonspeech markers varying in duration and spectral symmetry. The Journal of the Acoustical Society of America, 119(2), 1143–1155.

    Article  Google Scholar 

  • Pichora-Fuller, M. K., & Souza, P. E. (2003). Effects of aging on auditory processing of speech. International journal of audiology, 42(Suppl 2), 2S11–2S16.

    Google Scholar 

  • Purcell, D. W., John, S. M., Schneider, B. A., & Picton, T. W. (2004). Human temporal auditory acuity as assessed by envelope following responses. The Journal of the Acoustical Society of America, 116, 3581–3593. doi:10.1121/1.1798354.

    Article  Google Scholar 

  • Rhode, W. S., & Greenberg, S. (1994). Lateral suppression and inhibition in the cochlear nucleus of the cat. Journal of Neurophysiology, 71(2), 493–514.

    Google Scholar 

  • Rosen, S. (1992). Temporal information in speech: acoustic, auditory and linguistic aspects. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 336(1278), 367–373. doi:10.1098/rstb.1992.0070.

    Article  Google Scholar 

  • Schmiedt, R. A., Lang, H., Okamura, H., & Schulte, B. A. (2002). Effects of furosemide applied chronically to the round window: a model of metabolic presbyacusis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22(21), 9643–9650.

    Google Scholar 

  • Schuknecht, H. F., & Gacek, M. R. (1993). Cochlear pathology in presbycusis. The Annals of Otology, Rhinology, and Laryngology, 102(1 Pt 2), 1–16.

    Google Scholar 

  • Shannon, R. V, Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270, 303–304. http://www.sciencemag.org/cgi/doi/10.1126/science.270.5234.303

  • Shim, H. J., Won, J. H., Moon, I. J., Anderson, E. S., Drennan, W. R., McIntosh, N. E., et al. (2014). Can unaided non-linguistic measures predict cochlear implant candidacy? Otology & neurotology: official publication of the American Otological Society. American Neurotology Society [and] European Academy of Otology and Neurotology, 35(8), 1345–1353. doi:10.1097/MAO.0000000000000323.

    Article  Google Scholar 

  • Smith, Z. M., Delgutte, B., & Oxenham, A. J. (2002). Chimaeric sounds reveal dichotomies in auditory perception. Nature, 416, 87–90. doi:10.1038/416087a.

    Article  Google Scholar 

  • Snell, K. B. (1997). Age-related changes in temporal gap detection. The Journal of the Acoustical Society of America, 101(4), 2214–2220.

    Article  Google Scholar 

  • Strouse, A., Ashmead, D. H., Ohde, R. N., & Grantham, D. W. (1998). Temporal processing in the aging auditory system. The Journal of the Acoustical Society of America, 104(4), 2385–2399.

    Article  Google Scholar 

  • Supin, A. Y., Popov, V. V., Milekhina, O. N., & Tarakanov, M. B. (1994). Frequency resolving power measured by rippled noise. Hearing Research, 78(1), 31–40.

    Article  Google Scholar 

  • Supin, A. Y., Popov, V. V, Milekhina, O. N., & Tarakanov, M. B. (2005). Rippled-spectrum resolution dependence on masker-to-probe ratio. Hearing Research, 204, 191–199. doi:10.1016/j.heares.2005.01.010

  • Thibodeau, L. M., & Van Tasell, D. J. (1987). Tone detection and synthetic speech discrimination in band-reject noise by hearing-impaired listeners. The Journal of the Acoustical Society of America, 82(3), 864–873.

    Article  Google Scholar 

  • Turner, C. W., & Henn, C. C. (1989). The relation between vowel recognition and measures of frequency resolution. Journal of Speech and Hearing Research, 32(1), 49–58.

    Article  Google Scholar 

  • Vander Werff, K. R., & Burns, K. S. (2011). Brain stem responses to speech in younger and older adults. Ear and Hearing, 32(2), 168–180. doi:10.1097/AUD.0b013e3181f534b5.

    Article  Google Scholar 

  • Willott, J. F. (1991). Aging and the auditory system: anatomy, physiology, and psychophysics. San Diego, CA: Singular.

    Google Scholar 

  • Won, J. H., Drennan, W. R., & Rubinstein, J. T. (2007). Spectral-ripple resolution correlates with speech reception in noise in cochlear implant users. Journal of the Association for Research in Otolaryngology: JARO, 8(3), 384–392. doi:10.1007/s10162-007-0085-8.

    Article  Google Scholar 

  • Zeng, F.-G., Nie, K., Stickney, G. S., Kong, Y.-Y., Vongphoe, M., Bhargave, A., et al. (2005). Speech recognition with amplitude and frequency modulations. Proceedings of the National Academy of Sciences of the United States of America, 102, 2293–2298. doi:10.1073/pnas.0406460102.

    Article  Google Scholar 

  • Zhang, T., Spahr, A. J., Dorman, M. F., & Saoji, A. (2013). Relationship between auditory function of nonimplanted ears and bimodal benefit. Ear and Hearing, 34(2), 133–141. doi:10.1097/AUD.0b013e31826709af.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitchai Muthu Arivudai Nambi.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author expresses no conflict of interest.

Financial Disclosures

No financial support was received from government or non-government organization.

Informed Consent

Informed consent was obtained from all the participants of the study and the study protocol was approved by the institutional ethical committee.

Ethical Treatment of Experimental Subjects (Animal and Human)

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional ethics committee, Kasturba medical college (Manipal University), Mangalore and with the 1964 Helsinki declaration and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nambi, P.M.A., Sangamanatha, A.V., Vikas, M.D. et al. Perception of Spectral Ripples and Speech Perception in Noise by Older Adults. Ageing Int 41, 283–297 (2016). https://doi.org/10.1007/s12126-016-9248-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12126-016-9248-4

Keywords

Navigation