Skip to main content
Log in

The Tools of the Trade – Physiological Measurements of the Lungs

  • REVIEW ARTICLE
  • Published:
The Indian Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Pulmonary function assessment plays an integral part in the clinical management of school-aged children with respiratory disease. Pulmonary function tests (PFTs) are being increasingly applied in infants and preschool children too, albeit only in specialised centres. PFTs, when performed and interpreted accurately, provide objective outcome measures which can be used clinically to guide management, for prognostic purposes and in epidemiological research studies. They can be used to determine the nature and severity of lung disease, to ascertain response to treatment and to monitor disease progression. PFTs are rarely diagnostic in their own right with the exception of asthma, but are valuable adjuncts and before clinicians select a PFT they must know what the results are likely to be in the disease being considered. Spirometry and tests of airway calibre and function are the most widely used PFTs, as diseases in children commonly affect airway function. As such, spirometry should be a standard part of the assessment of school-age children who present to the pediatrician with chronic respiratory symptoms. This review will provide a bird’s eye view of currently available PFTs in children to assist in the diagnosis and management of respiratory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Castile RG, Davis SD. Pulmonary function testing in children. In: Wilmott RW, Boat TF, Bush A, Chernick V, Deterding R, Ratjen F, editors. Kendig’s disorders of the respiratory tract in children. Philadelphia: Elsevier; 2012. p. 211–33.

    Chapter  Google Scholar 

  2. Stocks J, Lum S. Pulmonary function tests in infants and preschool children. In: Wilmott RW, Boat TF, Bush A, Chernick V, Deterding R, Ratjen F, editors. Kendig’s disorders of the respiratory tract in children. Philadelphia: Elsevier; 2012. p. 169–210.

    Chapter  Google Scholar 

  3. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.

    Article  CAS  PubMed  Google Scholar 

  4. Beydon N, Davis SD, Lombardi E, et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med. 2007;175:1304–45.

    Article  PubMed  Google Scholar 

  5. Sonnappa S, Lum S, Kirkby J, et al. Disparities in pulmonary function in healthy children across the Indian urban–rural continuum. Am J Respir Crit Care Med. 2015;191:79–86.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Stanojevic S, Wade A, Stocks J. Reference values for lung function: past, present and future. Eur Respir J. 2010;36:12–9.

    Article  CAS  PubMed  Google Scholar 

  7. Stanojevic S, Wade A, Cole TJ, et al. Spirometry centile charts for young Caucasian children: the Asthma UK Collaborative Initiative. Am J Respir Crit Care Med. 2009;180:547–52.

    Article  PubMed  Google Scholar 

  8. Raju PS, Prasad KV, Ramana YV, Ahmed SK, Murthy KJ. Study on lung function tests and prediction equations in Indian male children. Indian Pediatr. 2003;40:705–11.

    PubMed  Google Scholar 

  9. Raju PS, Prasad KV, Ramana YV, Murthy KJ. Pulmonary function tests in Indian girls–prediction equations. Indian J Pediatr. 2004;71:893–7.

    Article  PubMed  Google Scholar 

  10. Vijayan VK, Reetha AM, Kuppurao KV, Venkatesan P, Thilakavathy S. Pulmonary function in normal south Indian children aged 7 to 19 years. Indian J Chest Dis Allied Sci. 2000;42:147–56.

    CAS  PubMed  Google Scholar 

  11. Couriel JM, Child F. Applied physiology: lung function tests in children. Curr Paediatr. 2006;16:413–9.

    Article  Google Scholar 

  12. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26:948–68.

    Article  CAS  PubMed  Google Scholar 

  13. Dab I, Alexander F. A simplified approach to the measurement of specific airway resistance. Pediatr Res. 1976;10:998–9.

    Article  CAS  PubMed  Google Scholar 

  14. Bisgaard H, Nielsen KG. Plethysmographic measurements of specific airway resistance in young children. Chest. 2005;128:355–62.

    Article  PubMed  Google Scholar 

  15. Klug B, Bisgaard H. Measurement of lung function in awake 2-4-year-old asthmatic children during methacholine challenge and acute asthma: a comparison of the impulse oscillation technique, the interrupter technique, and transcutaneous measurement of oxygen versus whole-body plethysmography. Pediatr Pulmonol. 1996;21:290–300.

    Article  CAS  PubMed  Google Scholar 

  16. Lowe L, Murray CS, Custovic A, Simpson BM, Kissen PM, Woodcock A. Specific airway resistance in 3-year-old children: a prospective cohort study. Lancet. 2002;359:1904–8.

    Article  PubMed  Google Scholar 

  17. Aurora P, Bush A, Gustafsson P, et al. Multiple-breath washout as a marker of lung disease in preschool children with cystic fibrosis. Am J Respir Crit Care Med. 2005;171:249–56.

    Article  PubMed  Google Scholar 

  18. Sonnappa S, Bastardo CM, Wade A, et al. Symptom-pattern phenotype and pulmonary function in preschool wheezers. J Allergy Clin Immunol. 2010;126:519–26.

    Article  PubMed  Google Scholar 

  19. Nielsen KG, Bisgaard H. Discriminative capacity of bronchodilator response measured with three different lung function techniques in asthmatic and healthy children aged 2 to 5 years. Am J Respir Crit Care Med. 2001;164:554–9.

    Article  CAS  PubMed  Google Scholar 

  20. Nielsen KG, Bisgaard H. Lung function response to cold air challenge in asthmatic and healthy children of 2–5 years of age. Am J Respir Crit Care Med. 2000;161:1805–9.

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen KG, Bisgaard H. The effect of inhaled budesonide on symptoms, lung function, and cold air and methacholine responsiveness in 2- to 5-year-old asthmatic children. Am J Respir Crit Care Med. 2000;162:1500–6.

    Article  CAS  PubMed  Google Scholar 

  22. Klug B, Bisgaard H. Lung function and short-term outcome in young asthmatic children. Eur Respir J. 1999;14:1185–9.

    Article  CAS  PubMed  Google Scholar 

  23. Merkus PJ, Mijnsbergen JY, Hop WC, de Jongste JC. Interrupter resistance in preschool children: measurement characteristics and reference values. Am J Respir Crit Care Med. 2001;163:1350–5.

    Article  CAS  PubMed  Google Scholar 

  24. Lombardi E, Sly PD, Concutelli G, et al. Reference values of interrupter respiratory resistance in healthy preschool white children. Thorax. 2001;56:691–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Beydon N, Amsallem F, Bellet M, et al. Pre/postbronchodilator interrupter resistance values in healthy young children. Am J Respir Crit Care Med. 2002;165:1388–94.

    Article  PubMed  Google Scholar 

  26. Phagoo SB, Wilson NM, Silverman M. Evaluation of the interrupter technique for measuring change in airway resistance in 5-year-old asthmatic children. Pediatr Pulmonol. 1995;20:387–95.

    Article  CAS  PubMed  Google Scholar 

  27. Beydon N, M’buila C, Bados A, et al. Interrupter resistance short-term repeatability and bronchodilator response in preschool children. Respir Med. 2007;101:2482–7.

    Article  PubMed  Google Scholar 

  28. Beydon N, Pin I, Matran R, et al. Pulmonary function tests in preschool children with asthma. Am J Respir Crit Care Med. 2003;168:640–4.

    Article  PubMed  Google Scholar 

  29. McKenzie SA, Bridge PD, Healy MJ. Airway resistance and atopy in preschool children with wheeze and cough. Eur Respir J. 2000;15:833–8.

    Article  CAS  PubMed  Google Scholar 

  30. Brussee JE, Smit HA, Koopman LP, et al. Interrupter resistance and wheezing phenotypes at 4 years of age. Am J Respir Crit Care Med. 2004;169:209–13.

    Article  PubMed  Google Scholar 

  31. Black J, Baxter-Jones AD, Gordon J, Findlay AL, Helms PJ. Assessment of airway function in young children with asthma: comparison of spirometry, interrupter technique, and tidal flow by inductance plethsmography. Pediatr Pulmonol. 2004;37:548–53.

    Article  CAS  PubMed  Google Scholar 

  32. Phagoo SB, Wilson NM, Silverman M. Repeatability of methacholine challenge in asthmatic children measured by change in transcutaneous oxygen tension. Thorax. 1992;47:804–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Beydon N, Trang-Pham H, Bernard A, Gaultier C. Measurements of resistance by the interrupter technique and of transcutaneous partial pressure of oxygen in young children during methacholine challenge. Pediatr Pulmonol. 2001;31:238–46.

    Article  CAS  PubMed  Google Scholar 

  34. Goldman MD. Clinical application of forced oscillation. Pulm Pharmacol Ther. 2001;14:341–50.

    Article  CAS  PubMed  Google Scholar 

  35. Oostveen E, MacLeod D, Lorino H, et al. The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J. 2003;22:1026–41.

    Article  CAS  PubMed  Google Scholar 

  36. Hellinckx J, Cauberghs M, De BK, Demedts M. Evaluation of impulse oscillation system: comparison with forced oscillation technique and body plethysmography. Eur Respir J. 2001;18:564–70.

    Article  CAS  PubMed  Google Scholar 

  37. Houghton CM, Woodcock AA, Singh D. A comparison of lung function methods for assessing dose–response effects of salbutamol. Br J Clin Pharmacol. 2004;58:134–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Olaguibel JM, varez-Puebla MJ, Anda M, et al. Comparative analysis of the bronchodilator response measured by impulse oscillometry (IOS), spirometry and body plethysmography in asthmatic children. J Investig Allergol Clin Immunol. 2005;15:102–6.

    CAS  PubMed  Google Scholar 

  39. Wanger J, Clausen JL, Coates A, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26:511–22.

    Article  CAS  PubMed  Google Scholar 

  40. Weibel ER, Sapoval B, Filoche M. Design of peripheral airways for efficient gas exchange. Respir Physiol Neurobiol. 2005;148:3–21.

    Article  PubMed  Google Scholar 

  41. Robinson PD, Latzin P, Verbanck S, et al. Consensus statement for inert gas washout measurement using multiple- and single- breath tests. Eur Respir J. 2013;41:507–22.

    Article  CAS  PubMed  Google Scholar 

  42. MacIntyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26:720–35.

    Article  CAS  PubMed  Google Scholar 

  43. Merkus PJFM, de Jongste JC, Stocks J. Paediatric lung function tests: respiratory function measurements in infants and children. Eur Respir Mon. 2005;31:166–94.

    Google Scholar 

  44. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7.

  45. Ulrich S, Hildenbrand FF, Treder U, et al. Reference values for the 6-minute walk test in healthy children and adolescents in Switzerland. BMC Pulm Med. 2013;13:49.

    Article  PubMed Central  PubMed  Google Scholar 

  46. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167:211–77.

  47. Ten Harkel AD, Takken T, Van Osch-Gevers M, Helbing WA. Normal values for cardiopulmonary exercise testing in children. Eur J Cardiovasc Prev Rehabil. 2011;18:48–54.

    PubMed  Google Scholar 

  48. Lee JS, Jang SI, Kim SH, Lee SY, Baek JS, Shim WS. The results of cardiopulmonary exercise test in healthy Korean children and adolescents: single center study. Korean J Pediatr. 2013;56:242–6.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Ilarraza-Lomeli H, Castaneda-Lopez J, Myers J, et al. Cardiopulmonary exercise testing in healthy children and adolescents at moderately high altitude. Arch Cardiol Mex. 2013;83:176–82.

    PubMed  Google Scholar 

  50. Aviation Health Unit: UK Civil Aviation Authority. Assesing fitness to fly. Online Available at https://www.caa.co.uk/default.aspx?catid=2497. Accessed on 25 Mar 2015.

  51. Rosenfeld M, Allen J, Arets BH, et al. An official American Thoracic Society workshop report: optimal lung function tests for monitoring cystic fibrosis, bronchopulmonary dysplasia, and recurrent wheezing in children less than 6 years of age. Ann Am Thorac Soc. 2013;10:S1–11.

    Article  PubMed  Google Scholar 

  52. Stocks J, Hislop A, Sonnappa S. Early lung development: lifelong effect on respiratory health and disease. Lancet Respir Med. 2013;1:728–42.

    Article  PubMed  Google Scholar 

  53. Pike K, Pillow JJ, Lucas JS. Long term respiratory consequences of intrauterine growth restriction. Semin Fetal Neonatal Med. 2012;17:92–8.

    Article  PubMed  Google Scholar 

  54. Smith LJ, McKay KO, Van Asperen PP, Selvadurai H, Fitzgerald DA. Normal development of the lung and premature birth. Paediatr Respir Rev. 2010;11:135–42.

    Article  PubMed  Google Scholar 

  55. Stocks J, Kirkby J, Lum S. How to avoid misinterpreting lung function tests in children: a few practical tips. Paediatr Respir Rev. 2014;15:170–80.

    PubMed  Google Scholar 

Download references

Conflict of Interest

None.

Source of Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samatha Sonnappa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonnappa, S. The Tools of the Trade – Physiological Measurements of the Lungs. Indian J Pediatr 82, 717–726 (2015). https://doi.org/10.1007/s12098-015-1787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12098-015-1787-2

Keywords

Navigation