Skip to main content
Log in

A direct construction of complete complementary code with zero correlation zone property for prime-power length

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper, we propose a direct construction of a novel type of code set which has combined properties of complete complementary code (CCC) and zero correlation zone (ZCZ) sequence set and which we call complete complementary-ZCZ (CC-ZCZ) code set. The code set is constructed using multivariate functions. The proposed construction also provides Golay-ZCZ codes of prime-power lengths. The proposed Golay-ZCZ codes are optimal and asymptotically optimal for binary and non-binary cases, respectively, by Tang-Fan-Matsufuzi bound. Furthermore, the proposed direct construction provides novel ZCZ sequences of length \(\varvec{p^k}\), where \(\varvec{p}\) is a prime number and \(\varvec{k}\) is an integer \(\varvec{\ge 2}\). We establish a relationship between the proposed CC-ZCZ code set and the first-order generalized Reed-Muller (GRM) code, and prove that both have the same Hamming distance. We also count the number of CC-ZCZ code sets in first-order GRM codes. The column sequence peak-to-mean envelope power ratio (PMEPR) of the proposed CC-ZCZ code set is derived and compared with existing works. From the proposed construction, the Golay-ZCZ code and ZCZ sequences are also derived and compared with the existing works. The proposed construction generalizes many of the existing works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Golay, M.: Complementary series. IRE Trans. on Inf. Theory. 7(2), 82–87 (1961). https://doi.org/10.1109/TIT.1961.1057620

    Article  MathSciNet  Google Scholar 

  2. Davis, J.A., Jedwab, J.: Peak-to-mean power control in OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. on Inf. Theory. 45(7), 2397–2417 (1999)

    Article  MathSciNet  Google Scholar 

  3. Tseng, C.-C., Liu, C.: Complementary sets of sequences. IEEE Trans. on Inf. Theory. 18(5), 644–652 (1972). https://doi.org/10.1109/TIT.1972.1054860

    Article  MathSciNet  Google Scholar 

  4. Paterson, K.G.: Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. on Inf. Theory. 46(1), 104–120 (2000). https://doi.org/10.1109/18.817512

    Article  MathSciNet  Google Scholar 

  5. Han, C., Suehiro, N., Hashimoto, T.: N-shift cross-orthogonal sequences and complete complementary codes. In: 2007 IEEE Int. Symp. on Inf. Theory, pp. 2611–2615 (2007). https://doi.org/10.1109/ISIT.2007.4557612

  6. Tseng, S.-M., Bell, M.R.: Asynchronous multicarrier DS-CDMA using mutually orthogonal complementary sets of sequences. IEEE Trans. on Commun. 48(1), 53–59 (2000). https://doi.org/10.1109/26.818873

    Article  Google Scholar 

  7. Chen, H.-H., Yeh, J.-F., Suehiro, N.: A multicarrier CDMA architecture based on orthogonal complementary codes for new generations of wideband wireless communications. IEEE Commun. Mag. 39(10), 126–135 (2001). https://doi.org/10.1109/35.956124

    Article  Google Scholar 

  8. Wang, S., Abdi, A.: MIMO ISI channel estimation using uncorrelated Golay complementary sets of polyphase sequences. IEEE Trans. Veh. Technol. 56(5), 3024–3039 (2007). https://doi.org/10.1109/TVT.2007.899947

    Article  Google Scholar 

  9. Li, S., Chen, J., Zhang, L.: Optimisation of complete complementary codes in MIMO radar system. Electron. Lett. 46, 1157–1159 (2010)

    Article  ADS  Google Scholar 

  10. Tang, J., Zhang, N., Ma, Z., Tang, B.: Construction of doppler resilient complete complementary code in MIMO radar. IEEE Trans. Signal Process. 62(18), 4704–4712 (2014). https://doi.org/10.1109/TSP.2014.2337272

    Article  ADS  MathSciNet  Google Scholar 

  11. Chen, C.-Y., Min, Y.-J., Lu, K.-Y., Chao, C.-C.: Cell search for cell-based OFDM systems using quasi complete complementary codes. In: IEEE Int. Conf. Commun., pp 4840–4844 (2008). https://doi.org/10.1109/ICC.2008.907

  12. Kojima, T., Tachikawa, T., Oizumi, A., Yamaguchi, Y., Parampalli, U.: A disaster prevention broadcasting based on data hiding scheme using complete complementary codes. In: Int. Symp. Inf. Theory Appl. (ISITA), pp 45–49 (2014)

  13. Rathinakumar, A., Chaturvedi, A.K.: Complete mutually orthogonal Golay complementary sets from Reed-Muller codes. IEEE Trans. Inf. Theory. 54, 1339–1346 (2008). https://doi.org/10.1109/TIT.2007.915980

    Article  MathSciNet  Google Scholar 

  14. Sarkar, P., Liu, Z., Majhi, S.: A direct construction of complete complementary codes with arbitrary lengths. (2021) arXiv:2102.10517

  15. Wang, Z., Wu, G., Ma, D.: A new method to construct Golay complementary set by paraunitary matrices and Hadamard matrices (2019) arXiv:1910.10302

  16. Wang, Z., Xue, E., Chai, J.: A method to construct complementary sets of non-power-of-two length by concatenation. In: 2017 Eighth international workshop on signal design and its applications in communications (IWSDA), pp. 24–28 (2017). https://doi.org/10.1109/IWSDA.2017.8095729

  17. Wang, Z., Ma, D., Gong, G., Xue, E.: New construction of complementary sequence (or array) sets and complete complementary codes. IEEE Trans. on Inf. Theory. 67(7), 4902–4928 (2021). https://doi.org/10.1109/TIT.2021.3079124

    Article  MathSciNet  Google Scholar 

  18. Chen, C.-Y., Wang, C.-H., Chao, C.-C.: Complete complementary codes and generalized Reed-Muller codes. IEEE Commun. Lett. 12(11), 849–851 (2008)

    Article  Google Scholar 

  19. Kumar, P., Majhi, S., Paul, S.: A direct construction of GCP and binary CCC of length non power of two. (2021) arXiv:2109.08567

  20. Spasojevic, P., Georghiades, C.N.: Complementary sequences for ISI channel estimation. IEEE Trans. on Inf. Theory. 47(3), 1145–1152 (2001). https://doi.org/10.1109/18.915670

    Article  MathSciNet  Google Scholar 

  21. Groenewald, J., Maharaj, B.: MIMO channel synchronization using Golay complementary pairs. In: AFRICON 2007, pp. 1–5 (2007). IEEE

  22. Wang, Y., Hu, T., Yang, Y., Zhou, Z.: Large zero correlation zones of Golay complementary sets. In: 2019 Ninth international workshop on signal design and its applications in communications (IWSDA), pp. 1–5 (2019). https://doi.org/10.1109/IWSDA46143.2019.8966105

  23. Long, B., Zhang, P., Hu, J.: A generalized QS-CDMA system and the design of new spreading codes. IEEE Trans. on Veh. Technol. 47(4), 1268–1275 (1998). https://doi.org/10.1109/25.728516

    Article  Google Scholar 

  24. Haderer, H., Feger, R., Pfeffer, C., Stelzer, A.: Millimeter-wave phase-coded CW MIMO radar using zero- and low-correlation-zone sequence sets. IEEE Trans. Microw. Theory and Techn. 64(12), 4312–4323 (2016). https://doi.org/10.1109/TMTT.2016.2613530

    Article  ADS  Google Scholar 

  25. Hu, S., Liu, Z., Guan, Y.L., Jin, C., Huang, Y., Wu, J.-M.: Training sequence design for efficient channel estimation in MIMO-FBMC systems. IEEE Access. 5, 4747–4758 (2017). https://doi.org/10.1109/ACCESS.2017.2688399

    Article  Google Scholar 

  26. Yang, S.-A., Wu, J.: Optimal binary training sequence design for multiple-antenna systems over dispersive fading channels. IEEE Trans. Veh. Technol. 51(5), 1271–1276 (2002). https://doi.org/10.1109/TVT.2002.800638

    Article  Google Scholar 

  27. Yuan, W., Wang, P., Fan, P.: Performance of multi-path MIMO channel estimation based on ZCZ training sequences. In: IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2, 1542–15452 (2005). https://doi.org/10.1109/MAPE.2005.1618220

  28. Zhang, R., Cheng, X., Ma, M., Jiao, B.: Interference-avoidance pilot design using ZCZ sequences for multi-cell MIMO-OFDM systems. In: IEEE Global communications conference (GLOBECOM), pp. 5056–5061 (2012). https://doi.org/10.1109/GLOCOM.2012.6503922

  29. Zhang, W., Zeng, F., Long, X., Xie, M.: Improved mutually orthogonal ZCZ polyphase sequence sets and their applications in OFDM frequency synchronization. In: 6th International conference on wireless communications networking and mobile computing (WiCOM), pp. 1–5 (2010). https://doi.org/10.1109/WICOM.2010.5600748

  30. Yang, J.-D., Jin, X., Song, K.-Y., No, J.-S., Shin, D.-J.: Multicode MIMO systems with quaternary LCZ and ZCZ sequences. IEEE Trans. Veh. Technol. 57(4), 2334–2341 (2008)

    Article  ADS  Google Scholar 

  31. He, S., Huang, Y., Jin, S., Yang, L.: Coordinated beamforming for energy efficient transmission in multicell multiuser systems. IEEE Trans. on Commun. 61(12), 4961–4971 (2013). https://doi.org/10.1109/TCOMM.2013.110313.130350

    Article  Google Scholar 

  32. Fragouli, C., Al-Dhahir, N., Turin, W.: Training-based channel estimation for multiple-antenna broadband transmissions. IEEE Trans. on Wireless Commun. 2(2), 384–391 (2003). https://doi.org/10.1109/TWC.2003.809454

    Article  Google Scholar 

  33. Deng, X., Fan, P.: Spreading sequence sets with zero correlation zone. Electronics Letters. 36, 993–994 (2000). https://doi.org/10.1049/el:20000720

    Article  ADS  Google Scholar 

  34. Appuswamy, R., Chaturvedi, A.K.: A new framework for constructing mutually orthogonal complementary sets and zero correlation zone sequences. IEEE Trans. Inf. Theory. 52, 3817–3826 (2006). https://doi.org/10.1109/TIT.2006.878171

    Article  Google Scholar 

  35. Tang, X., Fan, P., Lindner, J.: Multiple binary zero correlation zone sequence sets with good cross-correlation property based on complementary sequence sets. IEEE Trans. Inf. Theory. 56, 4038–4045 (2010). https://doi.org/10.1109/TIT.2010.2050796

    Article  Google Scholar 

  36. Liu, Y.-C., Chen, C.-W., Su, Y.T.: New constructions of zero-correlation zone sequences. IEEE Trans. on Inf. Theory. 59(8), 4994–5007 (2013). https://doi.org/10.1109/TIT.2013.2253831

    Article  MathSciNet  Google Scholar 

  37. Zhou, Z., Tang, X., Gong, G.: A new class of sequences with zero or low correlation zone based on interleaving technique. IEEE Trans. Inf. Theory. 54, 4267–4273 (2008). https://doi.org/10.1109/TIT.2008.928256

    Article  MathSciNet  Google Scholar 

  38. Torii, H., Nakamura, M., Suehiro, N.: A new class of zero-correlation zone sequences. IEEE Trans. Inf. Theory. 50, 559–565 (2004). https://doi.org/10.1109/TIT.2004.825399

    Article  MathSciNet  Google Scholar 

  39. Tang, Y.S., Chen, C.Y., Chao, C.C.: A novel construction of zero correlation zone sequences based on Boolean functions. In: IEEE 11th International symposium on spread spectrum techniques and applications, pp 198–203 (2010). https://doi.org/10.1109/ISSSTA.2010.5654347

  40. Liu, Z., Guan, Y., Parampalli, U.: A new construction of zero correlation zone sequences from generalized Reed-Muller codes. In: IEEE Inf. theory workshop (ITW) (2014). https://doi.org/10.1109/ITW.2014.6970900

  41. Kumar, N., Majhi, S., Sarkar, P., Upadhyay, A.K.: A Direct Construction of Prime-Power-Length Zero-Correlation Zone Sequences for QS-CDMA System. arXiv (2021). https://doi.org/10.48550/ARXIV.2111.06675. arXiv:2111.06675

  42. Gong, G., Huo, F., Yang, Y.: Large zero autocorrelation zones of Golay sequences and their applications. IEEE Trans. Commun. 61(9), 3967–3979 (2013). https://doi.org/10.1109/TCOMM.2013.072813.120928

    Article  Google Scholar 

  43. Gong, G., Huo, F., Yang, Y.: Large zero correlation zone of Golay pairs and QAM Golay pairs. In: 2013 IEEE Int. Symp. on Inf. Theory, pp. 3135–3139 (2013). https://doi.org/10.1109/ISIT.2013.6620803

  44. Chen, C.-Y., Wu, S.-W.: Golay complementary sequence sets with large zero correlation zones. IEEE Trans. Commun. 66(11), 5197–5204 (2018). https://doi.org/10.1109/TCOMM.2018.2857485

    Article  Google Scholar 

  45. Gu, Z., Zhou, Z., Adhikary, A.R., Feng, Y., Fan, P.: Asymptotically Optimal Golay-ZCZ Sequence Sets with Flexible Length. (2021) https://doi.org/10.48550/ARXIV.2112.08678. arXiv:2112.08678

  46. Gu, Z., Zhou, Z., Adhikary, A.R., Feng, Y., Fan, P.: Construction of Golay-ZCZ sequences with new lengths. In: IEEE Int. Symp. on Inf. Theory (ISIT), pp 1802–1805 (2021). https://doi.org/10.1109/ISIT45174.2021.9518058

  47. Gu, Z., Zhou, Z., Adhikary, A.R., Feng, Y., Fan, P.: New Constructions of Golay Complementary Pair/Array with Large Zero Correlation Zone. arXiv (2021). https://doi.org/10.48550/ARXIV.2108.05657. arXiv:2108.05657

  48. Adhikary, A.R., Liu, Z., Guan, Y.L., Majhi, S., Budishin, S.Z.: Optimal binary periodic almost-complementary pairs. IEEE Signal Process. Lett. 23(12), 1816–1820 (2016). https://doi.org/10.1109/LSP.2016.2600586

    Article  ADS  Google Scholar 

  49. Sarkar, P., Majhi, S., Liu, Z.: A direct and generalized construction of polyphase complementary sets with low PMEPR and high code-rate for OFDM system. IEEE Trans. Commun. 68(10), 6245–6262 (2020). https://doi.org/10.1109/TCOMM.2020.3007390

    Article  ADS  Google Scholar 

  50. Tang, X.H., Fan, P., Matsufuji, S.: Lower bounds on correlation of spreading sequence set with low or zero correlation zone. Electronics Letters. 36, 551–552 (2000). https://doi.org/10.1049/el:20000462

    Article  ADS  Google Scholar 

  51. Matsufuji, S.: Spreading sequence set for approximately synchronized CDMA system with no co-channel interference and high data capacity. WPMC’, 333–339 (1999)

  52. Kasami, T., Lin, S., Peterson, W.: New generalizations of the Reed-Muller codes-I: Primitive codes. IEEE Trans. on Inf. Theory. 14(2), 189–199 (1968). https://doi.org/10.1109/TIT.1968.1054127

    Article  MathSciNet  Google Scholar 

  53. Pai, C.-Y., Lin, Y.-J., Chen, C.-Y.: Optimal and almost-optimal golay-zcz sequence sets with bounded paprs. IEEE Trans. on Commun. 71(2), 728–740 (2022)

    Article  Google Scholar 

  54. Zhang, D., Parker, M., Helleseth, T.: Polyphase zero correlation zone sequences from generalised Bent functions. Cryptography and Commun. 12, 1–11 (2020). https://doi.org/10.1007/s12095-019-00413-2

    Article  MathSciNet  Google Scholar 

  55. Zhou, Z., Zhang, D., Helleseth, T., Wen, J.: A construction of multiple optimal zero correlation zone sequence sets with good cross-correlation. IEEE Trans. Inf. Theory. 1–1 (2018) https://doi.org/10.1109/TIT.2017.2756845

  56. Hayashi, T.: A class of zero-correlation zone sequence set using a perfect sequence. IEEE Signal Process. Lett. 16, 331–334 (2009). https://doi.org/10.1109/LSP.2009.2014115

    Article  ADS  Google Scholar 

  57. Liu, Z., Guan, Y.L., Parampalli, U.: New complete complementary codes for peak-to-mean power control in multi-carrier CDMA. IEEE Trans. on Commun. 62(3), 1105–1113 (2014)

    Article  Google Scholar 

  58. Wu, S.-W., Chen, C.-Y.: Optimal Z-complementary sequence sets with good peak-to-average power-ratio property. IEEE Signal Process. Lett. 25(10), 1500–1504 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sudhan Majhi gave the problem statement and idea to tackle it. Nishant Kumar solved the problem and wrote the manuscript. Ashish K. Upadhyay polished the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Sudhan Majhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A: Proof of Theorem 1

We state and prove a lemma which is used to prove the Theorem 1.

Lemma 3

Let \((i_1,i_2,\hdots ,i_m)\) and \((j_1,j_2,\hdots ,j_m)\) be p-ary representation of non-negative integers i and j respectively. Let \(f:\mathbb {Z}_p^m\rightarrow \mathbb {Z}_\lambda \) be a function as defined in (15). Now, from (16), we can write sequence \(a_{\mathbf {u_k}}^{\mathbf {v_k}}\) as

$$\begin{aligned} a_{\mathbf {u_k}}^{\mathbf {v_k}}=f+\frac{\lambda }{p}\sum _{\beta =1}^{k}{x_{\pi _{\beta }{(1)}}u_{\beta }}+\frac{\lambda }{p}\sum _{\beta =1}^{k}{x_{\pi _{\beta }{(n_\beta )}}v_{\beta }}. \end{aligned}$$
(A1)

Further, suppose we have \(i_{\pi _\beta (1)}=j_{\pi _\beta (1)}~\forall ~\beta =1,2,\hdots ,k\). For a certain \(\beta '\le k\), let us assume t be the smallest integer such that \(i_{\pi _{\beta '}(t)}\ne j_{\pi _{\beta '}(t)}\). Let us define \(i^\eta \) to be an integer whose vector representation with base p is

$$\begin{aligned} (i_1,i_2,\hdots ,i_{\pi _{\beta '}(t-1)}-\eta ,\hdots ,i_m), \end{aligned}$$
(A2)

which differs from that of i only at the position \(\pi _{\beta '}(t-1)\) and \(\eta =1,2,\hdots ,(p-1)\). Similarly, we define \(j^\eta \) such that its vector representation with base p is

$$\begin{aligned} (j_1,j_2,\hdots ,j_{\pi _{\beta '}(t-1)}-\eta ,\hdots ,j_m). \end{aligned}$$
(A3)

Then we have

$$\begin{aligned} \sum _{\eta =1}^{p-1}{\omega _\lambda ^{(a_{\mathbf {u_k}}^{\mathbf {v_k}})_{j^\eta }-(a_{\mathbf {u_k}}^{\mathbf {v_k}})_{i^\eta }}}+\omega _\lambda ^{(a_{\mathbf {u_k}}^{\mathbf {v_k}})_{j}-(a_{\mathbf {u_k}}^{\mathbf {v_k}})_{i}}=0. \end{aligned}$$
(A4)

Proof

For notational convenience, we write \(a_{\mathbf {u_k}}^{\mathbf {v_k}}=\textbf{c}\). Now using (15) and (A1), we can write

$$\begin{aligned} \textbf{c}_{i^\eta }-\textbf{c}_{i}=&f_{i^\eta }-f_{i} \nonumber \\ =&\frac{\lambda }{p}[i_{\pi _{\beta '}(t-2)}i_{\pi _{\beta '}(t-1)}^\eta +i_{\pi _{\beta '}(t-1)}^\eta i_{\pi _{\beta '}(t)}-i_{\pi _{\beta '}(t-2)}i_{\pi _{\beta '}(t-1)}^\eta -i_{\pi _{\beta '}(t-1)}i_{\pi _{\beta '}(t)}] \nonumber \\&+g_{\pi _{\beta '}(t-1)}[i_{\pi _{\beta '}(t-1)}^\eta -i_{\pi _{\beta '}(t-1)}] \nonumber \\ =&[-\eta \frac{\lambda }{p} i_{\pi _{\beta '}(t)}-\eta \frac{\lambda }{p} i_{\pi _{\beta '}(t-2)}-\eta g_{\pi _{\beta '}(t-1)}] \nonumber \\ =&-\eta [\frac{\lambda }{p}i_{\pi _{\beta '}(t)}+\frac{\lambda }{p}i_{\pi _{\beta '}(t-2)}+g_{\pi _{\beta '}(t-1)}]. \end{aligned}$$
(A5)

Similarly,

$$\begin{aligned} \textbf{c}_{j^\eta }-\textbf{c}_{j}=f_{j^\eta }-f_{j}=-\eta [\frac{\lambda }{p}j_{\pi _{\beta '}(t)}+\frac{\lambda }{p}j_{\pi _{\beta '}(t-2)}+g_{\pi _{\beta '}(t-1)}]. \end{aligned}$$
(A6)

From (A5) and (A6), we have

$$\begin{aligned} (\textbf{c}_{j^\eta }-\textbf{c}_{i^\eta })-(\textbf{c}_{j}-\textbf{c}_{i})=\eta \frac{\lambda }{p}(i_{\pi _{\beta '}(t)}-j_{\pi _{\beta '}(t)}). \end{aligned}$$
(A7)

Now, taking sum of \(\omega _\lambda ^{(\textbf{c}_{j^\eta }-\textbf{c}_{i^\eta })-(\textbf{c}_{j}-\textbf{c}_{i})}\) over \(\eta \), we have

$$\begin{aligned} \sum _{\eta =1}^{p-1}{\omega _\lambda ^{\textbf{c}_{j^\eta }-\textbf{c}_{i^\eta }-(\textbf{c}_{j}-\textbf{c}_{i})}=\sum _{\eta =1}^{p-1}{\omega _\lambda ^{\eta \frac{\lambda }{p}(i_{\pi _{\beta '}(t)}-j_{\pi _{\beta '}(t)})}}}=\sum _{\eta =1}^{p-1}{\omega _p^{\eta (i_{\pi _{\beta '}(t)}-j_{\pi _{\beta '}(t)})}}. \end{aligned}$$
(A8)

It is given that \(i_{\pi _{\beta '}(t)}\ne j_{\pi _{\beta '}(t)}\), implies that \(i_{\pi _{\beta '}(t)}-j_{\pi _{\beta '}(t)}\ne 0\) and hence RHS of (A8) is the sum of roots of polynomial \(z^p-1=0\) except the root \(z=1\). Hence

$$\begin{aligned} \sum _{\eta =1}^{p-1}{\omega _p^{\eta (i_{\pi _{\beta '}(t)}-j_{\pi _{\beta '}(t)})}}=-1 \end{aligned}$$
(A9)

Therefore, from (A8) and (A9), we have

$$\begin{aligned} \sum _{\eta =1}^{p-1}{\omega _\lambda ^{\textbf{c}_{j^\eta }-\textbf{c}_{i^\eta }-(\textbf{c}_{j}-\textbf{c}_{i})}}=-1, \end{aligned}$$
(A10)

which further implies that

$$\begin{aligned} \sum _{\eta =1}^{p-1}{\omega _\lambda ^{\textbf{c}_{j^\eta }-\textbf{c}_{i^\eta }}+\omega _\lambda ^{(\textbf{c}_{j}-\textbf{c}_{i})}}=0. \end{aligned}$$
(A11)

\(\square \)

Proof of Theorem

1 We need to show that for a fixed \(\mathbf {u_k}\), \(\mathbf {C_{u_k}}\) is a \((p^k,(p-1)p^{\pi _1(2)-1},p^m)\)-ZCZ. Except the ZCZ width all the parameters are directly inherited from Lemma 2. So, we only need to show that the ZCZ width is \((p-1)p^{\pi _1(2)-1}\). Let \(\textbf{c}\in \mathbf {C_{u_k}}\), by (17), \(\textbf{c}=\psi (a_{\mathbf {u_k}}^{\mathbf {v_{k_1}}})\) for some \(0\le \mathbf {v_{k_1}}\le p^k-1\). First, we find the PACF of \(\textbf{c}\) and show that for \(0<\tau \le (p-1)p^{\pi _1(2)-1}\),

$$\begin{aligned} \mathcal {P}(\textbf{c})(\tau )=\sum _{i=0}^{L-1}{\omega _\lambda ^{\textbf{c}_{(i+\tau )mod~L}-\textbf{c}_i}}=0, \end{aligned}$$
(A12)

where L is the length of the sequence, i.e., \(L=p^m\). For any integer i, let us denote another integer \(j=(i+\tau )mod~L\). Then we consider two cases and demonstrate that for each pair (ij) there exist other \((p-1)\) pairs \((i^\eta ,j^\eta ),~\eta =1,2,\hdots ,p-1\) such that

$$\begin{aligned} \sum _{\eta =1}^{p-1}{\omega _\lambda ^{\textbf{c}_{j^\eta }-\textbf{c}_{i^\eta }}+\omega _\lambda ^{(\textbf{c}_{j}-\textbf{c}_{i})}}=0, \end{aligned}$$
(A13)

in each case.

Case 1 (\(i_{\pi _{1}(2)}=j_{\pi _{1}(2)}\)) In this case, we have \(i_{\pi _{\beta }(1)}=j_{\pi _{\beta }(1)},~\forall \beta =1,2,\hdots ,k\). On the contrary, suppose this is not true. Then, assume that \(\bar{\beta }\) is the largest integer such that \(i_{\pi _{\bar{\beta }}(1)}\ne j_{\pi _{\bar{\beta }}(1)}\). For ease of presentation, let \(d=\pi _{\bar{\beta }}(1)\), now if \(j_d>i_d\), we have

$$\begin{aligned} \tau =j-i=&\sum _{s=1}^{d}{(j_s-i_s)p^{s-1}} \nonumber \\ =&(j_d-i_d)p^{d-1}+\sum _{s=1,s\ne \pi _{1}(2)}^{d-1}{(j_s-i_s)p^{s-1}}\nonumber \\ \ge&(j_d-i_d)p^{d-1}-(p-1)\sum _{s=1}^{d-1}{p^{s-1}}+(p-1)p^{\pi _{1}(2)-1}\nonumber \\ =&(j_d-i_d)p^{d-1}-(p-1)\Big [\frac{p^{d-1}-1}{p-1}\Big ]+(p-1)p^{\pi _{1}(2)-1}\nonumber \\ =&(j_d-i_d-1)p^{d-1}+1+(p-1)p^{\pi _{1}(2)-1}>(p-1)p^{\pi _{1}(2)-1}. \end{aligned}$$
(A14)

Hence (A14) implies that \(\tau >(p-1)p^{\pi _{1}(2)-1}\) which is a contradiction. Similarly, if \(j_d<i_d\), then

$$\begin{aligned} \tau&=j-i+p^m=\sum _{s=1}^{d}{(j_s-i_s)p^{s-1}}+p^m\nonumber \\&=(j_d-i_d)p^{m-\bar{\beta }}+p^m+\sum _{s=1,s\ne \pi _{1}(2)}^{d-1}{(j_s-i_s)p^{s-1}}\nonumber \\&=(j_d-i_d+p^{\bar{\beta }})p^{m-\bar{\beta }}+\sum _{s=1,s\ne \pi _{1}(2)}^{d-1}{(j_s-i_s)p^{s-1}}\nonumber \\&\ge (j_d-i_d+p^{\bar{\beta }})p^{m-\bar{\beta }}-(p-1)\sum _{s=1}^{d-1}{p^{s-1}}+(p-1)p^{\pi _{1}(2)-1}\nonumber \\ =&(j_d-i_d+p^{\bar{\beta }}-1)p^{m-\bar{\beta }}+1+(p-1)p^{\pi _{1}(2)-1}>(p-1)p^{\pi _{1}(2)-1}. \end{aligned}$$
(A15)

Again we got a contradiction. Hence \(i_{\pi _{\beta }(1)}=j_{\pi _{\beta }(1)}~\forall \beta =1,2,\hdots ,k\). Now without loss of generality, we assume that there exists a positive integer \(\beta '\le k\) such that \(i_{\pi _{\beta }(r)}=j_{\pi _{\beta }(r)},~\forall \beta =1,2,\hdots ,\beta '-1\) and \(r=1,2,\hdots ,n_{\beta }\). Assume t be the smallest integer with \(i_{\pi _{\beta '}(t)}\ne j_{\pi _{\beta '}(t)}\). Now, let us define \(i^\eta \) and \(j^\eta \) same as in (A2) and (A3) respectively. Then it can easily be obtained that \(j^\eta =(i^\eta +\tau )mod~L\) and hence using Lemma 3, we get (A13). Case 2 (\(i_{\pi _{1}(2)}\ne j_{\pi _{1}(2)}\)) In this case, let \(i^\eta \) and \(j^\eta \) are modified from i and j by changing only last bit of i and j as \(i_{m}^\eta =i_{m}-\eta \) and \(j_{m}^\eta =j_{m}-\eta \). Then

$$\begin{aligned} \textbf{c}_{i^\eta }-\textbf{c}_{i}&=f_{i^\eta }-f_{i}+\frac{\lambda }{p}(i_m-\eta -i_m)u_1\nonumber \\&=\frac{\lambda }{p}\left[ i_m^\eta i_{\pi _1(2)}-i_mi_{\pi _1(2)}\right] +g_{m}(i_m-\eta -i_m)+\frac{\lambda }{p}(i_m-\eta -i_m)u_1\nonumber \\&=-\eta \left[ \frac{\lambda }{p}i_{\pi _1(2)}+g_m+\frac{\lambda }{p}u_1\right] . \end{aligned}$$
(A16)

Similarly,

$$\begin{aligned} \textbf{c}_{j^\eta }-\textbf{c}_{j}=-\eta \left[ \frac{\lambda }{p}j_{\pi _1(2)}+g_m+\frac{\lambda }{p}u_1\right] . \end{aligned}$$
(A17)

By subtracting (A17) from (A16), we get

$$\begin{aligned} (\textbf{c}_{j^\eta }-\textbf{c}_{i^\eta })-(\textbf{c}_{j}-\textbf{c}_{i})=\eta \frac{\lambda }{p}(i_{\pi _{1}(2)}-j_{\pi _{1}(2)}). \end{aligned}$$
(A18)

Now following the same steps as in (A7), (A8), (A9), and (A10), we get

$$\begin{aligned} \sum _{\eta =1}^{p-1}{\omega _\lambda ^{\textbf{c}_{j^\eta }-\textbf{c}_{i^\eta }}+\omega _\lambda ^{(\textbf{c}_{j}-\textbf{c}_{i})}}=0. \end{aligned}$$
(A19)

Till now we have proved that for \(0<\tau \le (p-1)p^{\pi _1(2)-1}\), the value of \(\mathcal {P}(\textbf{c})(\tau )=0\). Now in the rest of the proof, we will prove that for any \(0\le \tau \le (p-1)p^{\pi _1(2)-1}\), the PCCF of any two different sequences in \(\mathbf {C_{u_k}}\) is zero. For that let \(0\le \varvec{\gamma _k},\varvec{\delta _k}\le p^k-1\) such that \(\psi (a_{\mathbf {u_k}}^{\varvec{\gamma _k}}),\psi (a_{\mathbf {u_k}}^{\varvec{\delta _k}})\in \mathbf {C_{u_k}}\). Again for notational convenience, we denote \(\psi (a_{\mathbf {u_k}}^{\varvec{\gamma _k}})\) and \(\psi (a_{\mathbf {u_k}}^{\varvec{\delta _k}})\) by \(\textbf{b}\) and \(\textbf{c}\) respectively. Then, we need to prove that for \(0\le \tau \le (p-1)p^{\pi _1(2)-1}\),

$$\begin{aligned} \mathcal {P}(\textbf{c},\textbf{b})(\tau )=\sum _{i=0}^{L-1}{\omega _\lambda ^{\textbf{c}_{(i+\tau )mod~L}-\textbf{b}_i}}=0. \end{aligned}$$
(A20)

Let \(j=(i+\tau )mod~L\). Following similar arguments as in Case 1 and Case 2, for any pair (ij), we can find other pairs \((i^\eta ,j^\eta ),~\eta =1,2,\hdots ,k-1\) such that

$$\begin{aligned} \sum _{\eta =1}^{p-1}{\omega _\lambda ^{\textbf{c}_{j^\eta }-\textbf{b}_{i^\eta }}+\omega _\lambda ^{(\textbf{c}_{j}-\textbf{b}_{i})}}=0, \end{aligned}$$
(A21)

for \(\tau \ne 0\), where \(j^\eta =(i^\eta +\tau )mod~L\). Therefore, we can obtain that (A20) holds for \(\tau \ne 0\). Now, it remains to prove that,

$$\begin{aligned} \mathcal {P}(\textbf{c},\textbf{b})(0)=\sum _{i=0}^{L-1}{\omega _\lambda ^{\textbf{c}_{i}-\textbf{b}_i}}=0. \end{aligned}$$
(A22)

Taking (A1) into consideration, let \(\textbf{c}-\textbf{b}=\frac{\lambda }{p}.\textbf{d}\). Then \(\textbf{d}\) is a non-zero codeword in \(GRM_p(m, 1)\). Now let \(\textbf{d}=(d_1,d_2,\hdots ,d_{p^m})\) and hence \(\textbf{d}\) can be written as linear combination of \(\theta (x_1),\theta (x_2),\) \(\hdots ,\theta (x_m)\) as \(\textbf{d}=c_1\cdot \theta (x_1)+c_2\cdot \theta (x_2)+\cdots +c_m\cdot \theta (x_m)\), where \(c_i\in \mathbb {Z}_p,~1\le i\le m\). For each i, \(\theta (x_i)\) contains each element of the set \(\{0,1,\hdots ,p-1\}\), \(p^{m-1}\) times. Hence \(\textbf{d}\) will also contains each element of the set \(\{0,1,\hdots ,p-1\}\), \(p^{m-1}\) times. Now (A22) can be written as

$$\begin{aligned} \mathcal {P}(\textbf{c},\textbf{b})(0)=\sum _{i=0}^{L-1}{\omega _\lambda ^{\frac{\lambda }{p}\textbf{d}_{i}}}=\sum _{i=0}^{L-1}{\omega _\lambda ^{\frac{\lambda }{p}\textbf{d}_{i}}}=\sum _{i=0}^{L-1}{\omega _p^{\textbf{d}_{i}}}=0. \end{aligned}$$
(A23)

Hence the Theorem 1 is proved.\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Majhi, S. & Upadhyay, A.K. A direct construction of complete complementary code with zero correlation zone property for prime-power length. Cryptogr. Commun. 16, 403–426 (2024). https://doi.org/10.1007/s12095-023-00676-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-023-00676-w

Keywords

Mathematics Subject Classification (2010)

Navigation