Skip to main content
Log in

Vectorial bent functions and linear codes from quadratic forms

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

In this paper, we study the vectorial bentness of an arbitrary quadratic form and construct two classes of linear codes of few weights from the quadratic forms. Let q be a prime power, m be a positive integer and \(Q:\mathbb {F}_{q^m}\rightarrow \mathbb {F}_q\) be a quadratic form. We first show that Q is a vectorial bent function if and only if Q is non-degenerate and \((q+1)m\) is even (i.e. either q is odd or m is even). Furthermore, if \(2\mid (q+1)m\) and \(Q(x)= \sum \limits _{i=0}^{m-1} \textrm{Tr}_{q^m/q}(a_i x^{q^i+1})\ (a_i\ne 0)\), we show that Q is vectorial bent if and only if the associated additive polynomial \(L_Q(x)=\sum _i (a_i + a_{m-i}^{q^{i}}) x^{q^i}\) is a permutation polynomial over \(\mathbb {F}_{q^m}\). If there is only one \(a_i\ne 0\), we recover the constructions of Sidelnikov, Dembowski-Ostrom and Kasami of quadratic vectorial bent functions. We then construct two classes of linear codes \(\mathcal {C}'_Q\) and \(\mathcal {C}_Q\) over \(\mathbb {F}_q\) from Q and completely determine the weight distributions of our codes, showing that they are two-, three- or four-weight codes and contain optimal codes satisfying the Griesmer and Singleton bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carlet, C., Mesnager, S.: Four decades of research on bent functions. Des. Codes Cryptogr. 78(1), 5–50 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlet, C.: Boolean Functions for Cryptography and Coding Theory. Cambridge University Press, Cambridge, U.K. (2021)

    MATH  Google Scholar 

  3. Carlet, C., Ding, C., Yuan, J.: Linear codes from perfect nonlinear mappings and their secret sharing schemes. IEEE Trans. Inf. Theory 51(6), 2089–2102 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calderbank, A., Goethals, J.: Three-weight codes and association schemes. Philips J. Res. 39, 143–152 (1984)

    MathSciNet  MATH  Google Scholar 

  5. Calderbank, A., Kantor, W.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18, 97–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Çeşmelioğlu, A., Meidl, W., Pott, A.: Vectorial bent functions in odd characteristic and their components. Cryptogr. Commun. 12, 899–912 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Casselman, W.: Quadratic forms over finite fields. Accessed: April 1, 2018. [Online]. Available: https://www.math.ubc.ca/~cass/research/pdf/FiniteFields.pdf

  8. Ding, C.: A construction of binary linear codes from Boolean functions. Discrete Math. 339, 2288–2303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, C., Munemasa, A., Tonchev, V.: Bent vectorial functions, codes and designs. IEEE Trans. Inf. Theory 65(11), 7533–7541 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ding, C., Wang, X.: A coding theory construction of new systematic authentication codes. Theor. Comput. Sci. 330(1), 81–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding, C., Li, N., Li, C., Zhou, Z.: Three-weight cyclic codes and their weight distributions. Discrete Math. 39(2), 415–427 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding, C., Yang, J.: Hamming weights in irreducible cyclic codes. Discrete Math. 313, 434–446 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, D., Zhang, X., Qu, L., Fu, S.: A note on vectorial bent functions. Inf. Process. Lett. 113(22), 866–870 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elman, R., Karpenko, N., Merkurjev, A.: The algebraic and geometric theory of quadratic forms. AMS Colloquium Publ. 56. American Mathematical Society, Providence, RI (2008)

  16. Feng, K., Luo, J.: Value distributions of exponential sums from perfect nonlinear functions and their applications. IEEE Trans. Inf. Theory 53(9), 3035–3041 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grassl, M.: Code Tables. Accessed: Feb. 13, 2019. [Online]. Available: http://www.codetables.de/

  18. Griesmer, J.: A bound for error-correcting codes. IBM J. Res. Develop. 4(5), 532–542 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  19. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields of odd characteristic. IEEE Trans. Inf. Theory 52(5), 2018–2032 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Helleseth, T., Kholosha, A.: On the dual of monomial quadratic \(p\)-ary bent functions. in Sequence, Subsequences and Consequences, In: Golomb, S., Gong, G., Helleseth, T., Song, H. (eds). Berlin: Springer-Verlag, 4893, Lecture Notes in Computer Science, 50-61 (2007)

  21. Helleseth, T.: The weight enumerator polynomials of some classes of codes with composite party-check polynomials. Discrete math. 20, 21–31 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heng, Z., Yue, Q.: Several classes of cyclic codes with either optimal three weights or a few weights. IEEE Trans. Inf. Theory 62(8), 4501–4513 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kumar, P.V., Scholtz, R.A., Welch, L.R.: Generalized bent functions and their properties. J. Comb. Theory (A) 40, 90–107 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lidl, R., Niederreiter, R.: Finite Fields, 2nd edn. Cambridge Univ. Press, Cambridge, U.K. (1997)

    MATH  Google Scholar 

  25. Liu, L., Xie, X., Li, L., Zhu, S.: The weight distributions of two classes of nonbinary cyclic codes with few weights. IEEE Commun. Lett. 21(11), 2336–2339 (2017)

    Article  Google Scholar 

  26. Li, C., Ling, S., Qu, L.: On the covering structures of two classes of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 55(1), 70–82 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C., Zeng, X., Hu, L.: A class of binary cyclic codes with five weights. Sci. China Math. 53(2), 3279–3286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo, J., Feng, K.: On the weight distributions of two classes of cyclic codes. IEEE Trans. Inf. Theory 54(12), 5332–5344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mesnager, S.: Bent Functions: Fundamentals and Results. Springer, Switzerland (2016)

    Book  MATH  Google Scholar 

  30. Mesnager, S.: Linear codes with few weights from weakly regular bent functions based on a generic construction. Cryptogr. Commun. 9(1), 71–84 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mesnager, S.: Several new infinite families of bent functions and their duals. IEEE Trans. Inf. Theory 60(7), 4397–4407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mesnager, S.: Bent vectorial functions and linear codes from \(o\)-polynomials. Des. Codes Cryptogr. 77, 99–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mesnager, S., Sinak, A.: Several classes of minimal linear codes with few weights from weakly regular plateaued functions. IEEE Trans. Inf. Theory 66(4), 2296–2310 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mesnager, S.: Linear codes from weakly regular plateaued functions and their secret sharing schemes. Des. Codes Cryptogr. 87(2–3), 463–480 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mesnager, S.: Linear codes from functions. A Concise Encyclopedia of Coding Theory CRC Press/Taylor and Francis Group (Publisher), London, New York (2021)

  36. Pott, A., Pasalic, E., Muratovié, A., Bajrié, S.: On the maximum number of bent components of vectorial functions. IEEE Trans. Inf. Theory 64(1), 403–411 (2018)

    Article  MathSciNet  Google Scholar 

  37. Pless, V., Huffman, W.: Handbook of Coding Theory. Amsterdam, The Netherlands: North-Holland, 1, (1998)

  38. Schmidt, K.-U.: Symmetric bilinear forms over finite fields with applications to coding theory. J. Algebr. Comb. 42(2), 635–670 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Schmidt, K.-U.: Quadratic and symmetric bilinear forms over finite fields and their association schemes. Algebr. Comb. 3(1), 161–189 (2020)

    MathSciNet  MATH  Google Scholar 

  40. Tang, D., Carlet, C., Zhou, Z.: Binary linear codes from vectorial boolean functions and their weight distribution. Discrete Math. 340, 3055–3072 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tang, C., Zhou, Z., Qi, Y., Zhang, X., Fan, C., Helleseth, T.: Generic construction of bent functions and bent idempotents with any possible algebraic degrees. IEEE Trans. Inf. Theory 63(10), 6149–6157 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tang, C., Li, N., Qi, Y., Zhou, Z., Helleseth, T.: Linear codes with two or three weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–1176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Vega, G.: Two-weight cyclic codes constructed as the direct sum of two one-weight cyclic codes. Finite Fields Appl. 14, 785–797 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vega, G.: A characterization of a class of optimal three-weight cyclic codes of dimension 3 over any finite field. Finite Fields Appl. 42, 23–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wu, Y., Li, N., Zeng, X.: Linear codes from perfect nonlinear functions over finite fields. IEEE Trans. Inf. Theory 68(1), 3–11 (2020)

    Article  Google Scholar 

  46. Wang, X., Zheng, D., Hu, L., Zeng, X.: The weight distributions of two classes of binary cyclic codes. Finite Fields Appl. 34, 192–207 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Xu, Y., Carlet, C., Mesnager, S., Wu, C.: Classification of bent monomials, constructions of bent monomials and upper bounds on the nonlinearity of vectorial functions. IEEE Trans. Inf. Theory 64(1), 367–383 (2018)

    Article  MATH  Google Scholar 

  48. Yuan, J., Carlet, C., Ding, C.: The weight distribution of a class of linear codes from perfect nonlinear functions. IEEE Trans. Inf. Theory 52(2), 712–717 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, S., Yao, Z., Zhao, C.: The weight distributions of two classes of \(p\)-ary cyclic codes with few weights. Finite Fields Appl. 44, 76–91 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhou, Z., Li, N., Fan, C., Helleseth, T.: Linear codes with two or three weights from quadratic bent functions. Des. Codes Cryptogr. 81(2), 283–295 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zeng, X., Hu, L., Jiang, W., Yue, Q., Cao, X.: Weight distribution of a \(p\)-ary cyclic codes. Finite Fields Appl. 16, 56–73 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zheng, D., Wang, X., Hu, L., Zeng, X.: The weight distributions of two classes of \(p\)-ary cyclic codes. Finite Fields Appl. 29, 202–224 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Ouyang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302902) and Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X., Ouyang, Y. & Mao, M. Vectorial bent functions and linear codes from quadratic forms. Cryptogr. Commun. 15, 1011–1029 (2023). https://doi.org/10.1007/s12095-023-00664-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-023-00664-0

Keywords

Mathematics Subject Classification (2010)

Navigation