Skip to main content
Log in

Upregulation of NPC1 and its association with poor prognosis in gastric cancer

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

The Niemann–Pick disease type C1 (NPC1) protein plays a pivotal role in lipid transport, particularly free cholesterol, within lysosomal/late endosomal membranes. Previous studies have highlighted NPC1 as a promising target for cholesterol trafficking and cancer therapy. Nevertheless, the expression of NPC1 in gastric cancer (GC) and its clinical implications remain unexplored. This study aims to investigate NPC1 expression in GC and its correlation with patient prognosis.

Methods

NPC1 expression levels in GC and normal tissues were assessed using the GEPIA database, and survival analysis was conducted via Kaplan‒Meier Plotter. Evaluation of potential biological effects of NPC1 in GC by protein–protein interaction network and GO, KEGG bioenrichment analysis. Immunohistochemistry was performed on surgical samples collected from 306 GC patients. Correlations between NPC1 expression, clinical characteristics, and patient prognosis were analyzed.

Results

NPC1 mRNA expression was elevated in GC tissues compared to normal tissues (P < 0.05) and significantly associated with poorer prognosis. In our cohort of 306 patients, NPC1 exhibited significant upregulation in GC versus adjacent normal tissues (P = 0.031). High NPC1 expression correlated with adverse clinical characteristics, including lymph node metastasis, distant metastasis, and advanced TNM stage (all P < 0.05). Patients with high NPC1 expression experienced notably shorter overall survival (P < 0.001), particularly in stages III and IV (P = 0.003). Multivariate Cox regression analysis identified high NPC1 expression as an independent prognostic factor for GC patients (HR 1.57, 95% CI 1.14–2.18, P = 0.006). Lastly, an optimized nomogram incorporating NPC1, tumor size, and TNM stage was constructed.

Conclusions

NPC1 expression is upregulated in GC and serves as a pivotal prognostic factor for adverse outcomes in GC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635–48. https://doi.org/10.1016/S0140-6736(20)31288-5.

    Article  CAS  PubMed  Google Scholar 

  3. Gong X, Qian H, Zhou X, Wu J, Wan T, Cao P, et al. Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell. 2016;165(6):1467–78. https://doi.org/10.1016/j.cell.2016.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lamri A, Pigeyre M, Garver WS, Meyre D. The extending spectrum of NPC1-related human disorders: from Niemann-Pick C1 disease to obesity. Endocr Rev. 2018;39(2):192–220. https://doi.org/10.1210/er.2017-00176.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, et al. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277(5323):228–31. https://doi.org/10.1126/science.277.5323.228.

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Gil JL, Bianconi SE, Farhat N, Kleiner DE, Nelson M, Porter FD. Hepatocellular carcinoma as a complication of Niemann-Pick disease type C1. Am J Med Genet A. 2021. https://doi.org/10.1002/ajmg.a.62382.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kelly DA, Portmann B, Mowat AP, Sherlock S, Lake BD. Niemann-Pick disease type C: diagnosis and outcome in children, with particular reference to liver disease. J Pediatr. 1993;123(2):242–7. https://doi.org/10.1016/s0022-3476(05)81695-6.

    Article  CAS  PubMed  Google Scholar 

  8. Du X, Zhang Y, Jo SR, Liu X, Qi Y, Osborne B, et al. Akt activation increases cellular cholesterol by promoting the proteasomal degradation of Niemann-Pick C1. Biochem J. 2015;471(2):243–53. https://doi.org/10.1042/BJ20150602.

    Article  CAS  PubMed  Google Scholar 

  9. Efthymiou AG, Steiner J, Pavan WJ, Wincovitch S, Larson DM, Porter FD, et al. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling. Stem Cells Transl Med. 2015;4(3):230–8. https://doi.org/10.5966/sctm.2014-0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zalba S, Ten HT. Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat Rev. 2017;52:48–57. https://doi.org/10.1016/j.ctrv.2016.10.008.

    Article  CAS  PubMed  Google Scholar 

  11. Mandal CC, Rahman MM. Targeting intracellular cholesterol is a novel therapeutic strategy for cancer treatment. J Cancer Sci Ther. 2014;6(12):510–3. https://doi.org/10.4172/1948-5956.1000316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma B, Gupta V, Dahiya D, Kumar H, Vaiphei K, Agnihotri N. Clinical relevance of cholesterol homeostasis genes in colorectal cancer. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(10):1314–27. https://doi.org/10.1016/j.bbalip.2019.06.008.

    Article  CAS  PubMed  Google Scholar 

  13. He J, Siu M, Ngan H, Chan K. Aberrant cholesterol metabolism in ovarian cancer: identification of novel therapeutic targets. Front Oncol. 2021;11: 738177. https://doi.org/10.3389/fonc.2021.738177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Infante RE, Wang ML, Radhakrishnan A, Kwon HJ, Brown MS, Goldstein JL. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc Natl Acad Sci USA. 2008;105(40):15287–92. https://doi.org/10.1073/pnas.0807328105.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Davies JP, Chen FW, Ioannou YA. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science. 2000;290(5500):2295–8. https://doi.org/10.1126/science.290.5500.2295.

    Article  CAS  PubMed  Google Scholar 

  16. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, et al. Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2011;477(7364):340–3. https://doi.org/10.1038/nature10348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garcia-Ruiz C, Conde DLRL, Ribas V, Fernandez-Checa JC. Mitochondrial cholesterol and cancer. Semin Cancer Biol. 2021;73:76–85. https://doi.org/10.1016/j.semcancer.2020.07.014.

    Article  CAS  PubMed  Google Scholar 

  18. Castellano BM, Thelen AM, Moldavski O, Feltes M, van der Welle RE, Mydock-McGrane L, et al. Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex. Science. 2017;355(6331):1306–11. https://doi.org/10.1126/science.aag1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Naren D, Wu J, Gong Y, Yan T, Wang K, Xu W, et al. Niemann-Pick disease type C1(NPC1) is involved in resistance against imatinib in the imatinib-resistant Ph+ acute lymphoblastic leukemia cell line SUP-B15/RI. Leuk Res. 2016;42:59–67. https://doi.org/10.1016/j.leukres.2016.01.007.

    Article  CAS  PubMed  Google Scholar 

  20. Head SA, Shi WQ, Yang EJ, Nacev BA, Hong SY, Pasunooti KK, et al. Simultaneous targeting of NPC1 and VDAC1 by itraconazole leads to synergistic inhibition of mTOR signaling and angiogenesis. ACS Chem Biol. 2017;12(1):174–82. https://doi.org/10.1021/acschembio.6b00849.

    Article  CAS  PubMed  Google Scholar 

  21. Lyu J, Yang EJ, Head SA, Ai N, Zhang B, Wu C, et al. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth. Cancer Lett. 2017;409:91–103. https://doi.org/10.1016/j.canlet.2017.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul. 2015;57:130–46. https://doi.org/10.1016/j.jbior.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  23. Kabouridis PS, Janzen J, Magee AL, Ley SC. Cholesterol depletion disrupts lipid rafts and modulates the activity of multiple signaling pathways in T lymphocytes. Eur J Immunol. 2000;30(3):954–63. https://doi.org/10.1002/1521-4141(200003)30:3%3c954::AID-IMMU954%3e3.0.CO;2-Y.

    Article  CAS  PubMed  Google Scholar 

  24. Xu H, Zhou S, Tang Q, Xia H, Bi F. Cholesterol metabolism: new functions and therapeutic approaches in cancer. Biochim Biophys Acta Rev Cancer. 2020;1874(1): 188394. https://doi.org/10.1016/j.bbcan.2020.188394.

    Article  CAS  PubMed  Google Scholar 

  25. Hu P, Li H, Sun W, Wang H, Yu X, Qing Y, et al. Cholesterol-associated lysosomal disorder triggers cell death of hematological malignancy: dynamic analysis on cytotoxic effects of LW-218. Acta Pharm Sin B. 2021;11(10):3178–92. https://doi.org/10.1016/j.apsb.2021.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu J, Dang Y, Ren YR, Liu JO. Cholesterol trafficking is required for mTOR activation in endothelial cells. Proc Natl Acad Sci USA. 2010;107(10):4764–9. https://doi.org/10.1073/pnas.0910872107.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lyu J, Yang EJ, Head SA, Ai N, Zhang B, Wu C, et al. Astemizole Inhibits mTOR signaling and angiogenesis by blocking cholesterol trafficking. Int J Biol Sci. 2018;14(10):1175–85. https://doi.org/10.7150/ijbs.26011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 81802342), Guangzhou Municipal Science and Technology Project (Grant No. 2023A04J2208) and Kelin New Star of the First Affiliated Hospital of Sun Yat‐sen University (Grant No. R08010). The authors expressed high respect to the patients who provided clinical samples for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Zhixiong Wang and Guanghua Li; methodology, Zhixiong Wang; software, Jiahua Huang and Wei Tang; validation, Wei Tang; investigation, Jiahua Huang; resources, Zhihao Zhou and Zhixiong Wang; data curation, Jiahua Huang; writing—original draft preparation, Wei Tang and Jiahua Huang; writing—review and editing, Zhixiong Wang; visualization, Wei Tang; funding acquisition, Zhixiong Wang. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zhixiong Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Ethical approval

The study was reviewed and approved by the Ethics Committee for Clinical Research and Animal Trials of the First Affiliated Hospital of Sun Yat-sen University (Approval No. [2022]715).

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, W., Huang, J., Li, G. et al. Upregulation of NPC1 and its association with poor prognosis in gastric cancer. Clin Transl Oncol (2024). https://doi.org/10.1007/s12094-024-03490-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12094-024-03490-9

Keywords

Navigation