Skip to main content

Advertisement

Log in

Chordoma: demographics and survival analysis with a focus on racial disparities and the role of surgery, a U.S. population-based study

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Chordoma is a rare malignant tumor of notochordal origin that may appear anywhere in the axial skeleton from the skull base to the sacrum. This study presents findings from a large database query to highlight the demographic, clinical, and pathological factors, prognosis, and survival of chordomas.

Methods

The Surveillance, Epidemiology, and End Results (SEER) data based was used to identify patients with a “chordoma” diagnosis from 200 to 2018.

Results

In a total of 1600 cases, the mean age at diagnosis was 54.47 years (standard deviation, SD ± 19.62 years). Most cases were male (57.1%) and white (84.5%). Tumor size was found to be > 4 cm in 26% of cases. Histologically, 33% with known features had well-differentiated Grade I tumors, and 50.2% of the tumors were localized. Metastasis at the time of to the bone, liver, and lung was observed at a rate of 0.5%, 0.1%, and 0.7%, respectively. The most common treatment received was surgical resection (41.3%). The overall 5-year overall survival observed was 39% (confidence interval, CI 95% 37–41; p = 0.05) with patients who received surgery having a 5-year survival rate of 43% (CI 95% 40–46; p = 0.05). Multivariate analysis showed independent factors that contributed to worse prognosis chemotherapy only as a treatment modality and no surgery as a treatment modality.

Conclusion

Chordomas are more common in white males and appear between the 5th and 6th decades of life. Factors that contributed to a worse prognosis were Asian, Pacific Islander, American Indian, or Alaska Native races.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data is publicly available deidentified data from SEER database.

References

  1. Xia B, Biswas K, Foo TK, Gomes TT, Riedel-Topper M, Southon E, et al. Rare germline variants in PALB2 and BRCA2 in familial and sporadic chordoma. Hum Mutat. 2022;43:1396–407. https://doi.org/10.1002/humu.24427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Whelan J, McTiernan A, Cooper N, Wong YK, Francis M, Vernon S, et al. Incidence and survival of malignant bone sarcomas in England 1979–2007. Int J Cancer. 2012;131:E508–17. https://doi.org/10.1002/ijc.26426.

    Article  CAS  PubMed  Google Scholar 

  3. Smoll NR, Gautschi OP, Radovanovic I, Schaller K, Weber DC. Incidence and relative survival of chordomas. Cancer. 2013;119:2029–37. https://doi.org/10.1002/cncr.28032.

    Article  PubMed  Google Scholar 

  4. McMaster ML, Goldstein AM, Bromley CM, Ishibe N, Parry DM. Chordoma: incidence and survival patterns in the United States, 1973–1995. Cancer Causes Control: CCC. 2001;12(1):1–11. https://doi.org/10.1023/a:1008947301735.

    Article  CAS  PubMed  Google Scholar 

  5. Soule E, Baig S, Fiester P, Holtzman A, Rutenberg M, Tavanaiepour D, et al. Current management and image review of skull base Chordoma: what the radiologist needs to know. J Clin Imaging Sci. 2021;11:46. https://doi.org/10.25259/JCIS_139_2021.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bakker SH, Jacobs WCH, Pondaag W, Gelderblom H, Nout RA, Dijkstra PDS, et al. Chordoma: a systematic review of the epidemiology and clinical prognostic factors predicting progression-free and overall survival. Eur Spine J. 2018;27:3043–58. https://doi.org/10.1007/s00586-018-5764-0.

    Article  CAS  PubMed  Google Scholar 

  7. Nibu Y, José-Edwards DS, Di Gregorio A. From notochord formation to hereditary chordoma: the many roles of Brachyury. BioMed Res Int. 2013. https://doi.org/10.1155/2013/826435.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Presneau N, Shalaby A, Idowu B, Gikas P, Cannon SR, Gout I, et al. Potential therapeutic targets for chordoma: PI3K/AKT/TSC1/TSC2/mTOR pathway. Br J Cancer. 2009;100(9):1406–14. https://doi.org/10.1038/sj.bjc.6605019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ulici V, Hart J. Chordoma: a review and differential diagnosis. Arch Pathol Lab Med. 2022;146(3):386–95. https://doi.org/10.5858/arpa.2020-0258-RA.

    Article  CAS  PubMed  Google Scholar 

  10. Kerekes D, Goodwin CR, Ahmed AK, Verlaan J, Bettegowda C, Abu-Bonsrah N, et al. Local and distant recurrence in resected sacral chordomas: a systematic review and pooled cohort analysis. Global Spine J. 2019;9(2):191–201. https://doi.org/10.1177/2192568217741114.

    Article  PubMed  Google Scholar 

  11. Zileli M, Karakoç HTE. Outcomes of chordomas of the sacrum and mobile spine: clinical series with average 6-year follow-up. J Craniovert Jun Spine. 2021;12(4):412–9. https://doi.org/10.4103/jcvjs.jcvjs_124_21.

    Article  Google Scholar 

  12. Hulou MM, Garcia CR, Slone SA, Dugan A, Lei F, Huang B, et al. Comprehensive review of cranial chordomas using national databases in the USA. Clin Oncol. 2019;31(9):e149–59. https://doi.org/10.1016/j.clon.2019.06.004.

    Article  CAS  Google Scholar 

  13. Kim SC, Cho W, Chang UK, Youn SM. Two cases of dedifferentiated chordoma in the sacrum. Korean J Spine. 2015;12(3):230–4. https://doi.org/10.14245/kjs.2015.12.3.230.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Antonescu, C. (2020). Soft tissue and bone tumours. International Agency for Research on Cancer. Retrieved February 12, 2023, from https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours/Soft-Tissue-And-Bone-Tumours-2020. Accessed 18 Oct 2022.

  15. Mobley BC, McKenney JK, Bangs CD, Callahan K, Yeom KW, Schneppenheim R, et al. Loss of SMARCB1/INI1 expression in poorly differentiated chordomas. Acta Neuropathol. 2010;120(6):745–53. https://doi.org/10.1007/s00401-010-0767-x.

    Article  CAS  PubMed  Google Scholar 

  16. Yang XR, Ng D, Alcorta DA, Liebsch NJ, Sheridan E, Li S, et al. T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet. 2009;41(11):1176–8. https://doi.org/10.1038/ng.454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Owen JH, Komarck CM, Wang AC, Abuzeid WM, Keep RF, McKean EL, et al. UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg. 2018;128(3):701–9. https://doi.org/10.3171/2016.10.JNS16877.

    Article  CAS  PubMed  Google Scholar 

  18. Hu Y, Mintz A, Shah SR, Quinones-Hinojosa A, Hsu W. The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival. Carcinogenesis. 2014;35(7):1491–9. https://doi.org/10.1093/carcin/bgu014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barber SM, Sadrameli SS, Lee JJ, Fridley JS, Teh BS, Oyelese AA, et al. Chordoma-current understanding and modern treatment paradigms. J Clin Med. 2021;10(5):1054. https://doi.org/10.3390/jcm10051054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Weinberger PM, Yu Z, Kowalski D, Joe J, Manger P, Psyrri A, et al. Differential expression of epidermal growth factor receptor, c-Met, and HER2/neu in chordoma compared with 17 other malignancies. Arch Otolaryngol Head Neck Surg. 2005;131(8):707–11. https://doi.org/10.1001/archotol.131.8.707.

    Article  PubMed  Google Scholar 

  21. Horbinski C, Oakley GJ, Cieply K, Mantha GS, Nikiforova MN, Dacic S, et al. The prognostic value of Ki-67, p53, epidermal growth factor receptor, 1p36, 9p21, 10q23, and 17p13 in skull base chordomas. Arch Pathol Lab Med. 2010;134(8):1170–6. https://doi.org/10.5858/2009-0380-OA.1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Arai M, Nobusawa S, Ikota H, Takemura S, Nakazato Y. Frequent IDH1/2 mutations in intracranial chondrosarcoma: a possible diagnostic clue for its differentiation from chordoma. Brain Tumor Pathol. 2012;29(4):201–6. https://doi.org/10.1007/s10014-012-0085-1.

    Article  CAS  PubMed  Google Scholar 

  23. Aleksic T, Browning L, Woodward M, Phillips R, Page S, Henderson S, et al. Durable response of spinal chordoma to combined inhibition of IGF-1R and EGFR. Front Oncol. 2016. https://doi.org/10.3389/fonc.2016.00098.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scheipl S, Froehlich EV, Leithner A, Beham A, Quehenberger F, Mokry M, et al. Does insulin-like growth factor 1 receptor (IGF-1R) targeting provide new treatment options for chordomas? A retrospective clinical and immunohistochemical study. Histopathology. 2012;60(6):999–1003. https://doi.org/10.1111/j.1365-2559.2012.04186.x.

    Article  PubMed  Google Scholar 

  25. Ulici V, Hart J. Chordoma. Arch Pathol Lab Med. 2022;146(3):386–95. https://doi.org/10.5858/arpa.2020-0258-RA.

    Article  CAS  PubMed  Google Scholar 

  26. Sangoi AR, Karamchandani J, Lane B, Higgins JP, Rouse RV, Brooks JD, McKenney JK. Specificity of brachyury in the distinction of chordoma from clear cell renal cell carcinoma and germ cell tumors: a study of 305 cases. Mod Pathol. 2011;24(3):425–9. https://doi.org/10.1038/modpathol.2010.196.

    Article  CAS  PubMed  Google Scholar 

  27. Oakley GJ, Fuhrer K, Seethala RR. Brachyury, SOX-9, and podoplanin, new markers in the skull base chordoma vs chondrosarcoma differential: a tissue microarray-based comparative analysis. Mod Pathol. 2008;21(12):1461–9. https://doi.org/10.1038/modpathol.2008.144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones PS, Aghi MK, Muzikansky A, Shih HA, Barker FG 2nd, Curry WT Jr. Outcomes and patterns of care in adult skull base chordomas from the surveillance, epidemiology, and end results (SEER) database. J Clin Neurosci. 2014;21(9):1490–6. https://doi.org/10.1016/j.jocn.2014.02.008.

    Article  PubMed  Google Scholar 

  29. Pennicooke B, Laufer I, Sahgal A, Varga PP, Gokaslan ZL, Bilsky MH, et al. Safety and local control of radiation therapy for chordoma of the spine and sacrum: a systematic review. Spine. 2016;41(Suppl 20):S186–92. https://doi.org/10.1097/BRS.0000000000001831.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chan P, Boriani S, Fourney DR, Biagini R, Dekutoski MB, Fehlings MG, et al. An assessment of the reliability of the Enneking and Weinstein-Boriani-Biagini classifications for staging of primary spinal tumors by the Spine Oncology Study Group. Spine. 2009;34(4):384–91. https://doi.org/10.1097/BRS.0b013e3181971283.

    Article  PubMed  Google Scholar 

  31. Dickerson TE, Ullah A, Saineni S, Sultan S, Sama S, Ghleilib I, et al. Recurrent metastatic chordoma to the liver: a case report and review of the literature. Curr Oncol. 2022;29(7):4625–31. https://doi.org/10.3390/curroncol29070367.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Casali PG, Stacchiotti S, Grosso F, Messina A, Crippa F, Tamborini E, et al. Adding cisplatin (CDDP) to imatinib (IM) re-establishes tumor response following secondary resistance to IM in advanced chordoma. J Clin Oncol. 2007;25(18_suppl):10038. https://doi.org/10.1200/jco.2007.25.18_suppl.10038.

    Article  Google Scholar 

  33. Liu T, Shen JK, Choy E, Zhang Y, Mankin HJ, Hornicek FJ, et al. CDK4 expression in chordoma: a potential therapeutic target. J Orthop Res. 2018;36(6):1581–9. https://doi.org/10.1002/jor.23819.

    Article  CAS  PubMed  Google Scholar 

  34. Sun X, Hornicek F, Schwab JH. Chordoma: an update on the pathophysiology and molecular mechanisms. Curr Rev Musculoskelet Med. 2015;8(4):344–52. https://doi.org/10.1007/s12178-015-9311-x.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding is received for this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed contributed to this manuscript from conceptualization, literature search, writing—original draft preparation, writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Asad Ullah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All the data is publicly available no Institutional Review Board approval is waived for this manuscript.

Informed consent

Patient consent was waived due to this article being from the SEER database, which contains publicly available deidentified patients’ data from the National Cancer Institute (NCI), USA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Kenol, G.S., Lee, K.T. et al. Chordoma: demographics and survival analysis with a focus on racial disparities and the role of surgery, a U.S. population-based study. Clin Transl Oncol 26, 109–118 (2024). https://doi.org/10.1007/s12094-023-03227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-023-03227-0

Keywords

Navigation