Skip to main content

Advertisement

Log in

CircZNF236 facilitates malignant progression in oral squamous cell carcinoma by sequestering miR-145-5p

  • RESEARCH ARTICLE
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

A number of non-coding circular RNAs (circRNAs) have recently been implicated in the modulation of gene expression in cancer models. We therefore sought to explore if circZNF236 has a role in oral squamous cell carcinoma (OSCC).

Methods

We first examined circZNF236 expression in 32 pairs of OSCC and noncancerous tissues. We then investigated a functional role for circZNF236 using knockdown and overexpression approaches in OSCC cancer cell lines. Cell counting kit-8, wound healing, Transwell, and flow cytometry were employed to assess circZNF236 function in vitro. The association between circZNF236 and miR-145-5p, or that between miR-145-5p and malignant brain tumor domain containing 1 (MBTD1) was predicted by bioinformatics and demonstrated by dual-luciferase reporter assays, RNA pull-down assays as well as RNA immunoprecipitation (RIP) assays. A mouse OSCC xenograft model was employed to demonstrate the impacts of circZNF236 inhibition on tumor development in vivo.

Results

OSCC tissues and cells had higher levels of circZNF236 expression compared with normal controls. Furthermore, high circZNF236 levels in patients with OSCC correlated with a poor prognosis. CircZNF236 silencing decreased the malignant properties of OSCC cells and suppressed OSCC tumor formation in the mouse model. We then noticed that miR-145-5p can be regulated by circZNF236, and that circZNF2361 promoted OSCC development by absorbing miR-145-5p and consequently upregulating MBTD1 expression.

Conclusion

CircZNF236 modulates OSCC via the miR-145-5p/MBTD1 axis. These results support the potential of circZNF236 as a treatment target for OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Additional data can be obtained from the corresponding author.

References

  1. Chai AWY, Lim KP, Cheong SC. Translational genomics and recent advances in oral squamous cell carcinoma. Semin Cancer Biol. 2020;61:71–83. https://doi.org/10.1016/j.semcancer.2019.09.011.

    Article  CAS  PubMed  Google Scholar 

  2. Zhang L, Meng X, Zhu XW, Yang DC, Chen R, Jiang Y, et al. Long non-coding RNAs in oral squamous cell carcinoma: biologic function, mechanisms and clinical implications. Mol Cancer. 2019;18(1):102. https://doi.org/10.1186/s12943-019-1021-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Huang F, Xin C, Lei K, Bai H, Li J, Chen Q. Noncoding RNAs in oral premalignant disorders and oral squamous cell carcinoma. Cell Oncol (Dordr). 2020;43(5):763–77. https://doi.org/10.1007/s13402-020-00521-9.

    Article  CAS  PubMed  Google Scholar 

  4. Menini M, De Giovanni E, Bagnasco F, Delucchi F, Pera F, Baldi D, et al. Salivary micro-RNA and oral squamous cell carcinoma: a systematic review. J Pers Med. 2021. https://doi.org/10.3390/jpm11020101.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fan HY, Jiang J, Tang YJ, Liang XH, Tang YL. CircRNAs: a new chapter in oral squamous cell carcinoma biology. Onco Targets Ther. 2020;13:9071–83. https://doi.org/10.2147/OTT.S263655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRNAs: role in human diseases and potential use as biomarkers. Cell Death Dis. 2021;12(5):468. https://doi.org/10.1038/s41419-021-03743-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li P, Zhu K, Mo Y, Deng X, Jiang X, Shi L, et al. Research progress of circRNAs in head and neck cancers. Front Oncol. 2021;11:616202. https://doi.org/10.3389/fonc.2021.616202.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–91. https://doi.org/10.1038/s41576-019-0158-7.

    Article  CAS  PubMed  Google Scholar 

  9. Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21(8):475–90. https://doi.org/10.1038/s41580-020-0243-y.

    Article  CAS  PubMed  Google Scholar 

  10. Li R, Jiang J, Shi H, Qian H, Zhang X, Xu W. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci. 2020;77(9):1661–80. https://doi.org/10.1007/s00018-019-03345-5.

    Article  CAS  PubMed  Google Scholar 

  11. Chen S, Chen C, Hu Y, Song G, Shen X. The diverse roles of circular RNAs in pancreatic cancer. Pharmacol Ther. 2021;226:107869. https://doi.org/10.1016/j.pharmthera.2021.107869.

    Article  CAS  PubMed  Google Scholar 

  12. Yin Y, Long J, He Q, Li Y, Liao Y, He P, et al. Emerging roles of circRNA in formation and progression of cancer. J Cancer. 2019;10(21):5015–21. https://doi.org/10.7150/jca.30828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng S, Qian Z, Jiang F, Ge D, Tang J, Chen H, et al. CircRNA LRP6 promotes the development of osteosarcoma via negatively regulating KLF2 and APC levels. Am J Transl Res. 2019;11(7):4126–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19(1):218. https://doi.org/10.1186/s13059-018-1594-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tang X, Ren H, Guo M, Qian J, Yang Y, Gu C. Review on circular RNAs and new insights into their roles in cancer. Comput Struct Biotechnol J. 2021;19:910–28. https://doi.org/10.1016/j.csbj.2021.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang Q, Li F, He AT, Yang BB. Circular RNAs: expression, localization, and therapeutic potentials. Mol Ther. 2021;29(5):1683–702. https://doi.org/10.1016/j.ymthe.2021.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018;71(3):428–42. https://doi.org/10.1016/j.molcel.2018.06.034.

    Article  CAS  PubMed  Google Scholar 

  18. Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T, et al. CircRNAs in cancer metabolism: a review. J Hematol Oncol. 2019;12(1):90. https://doi.org/10.1186/s13045-019-0776-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xin D, Xin Z. CircRNA_100782 promotes roliferation and metastasis of gastric cancer by downregulating tumor suppressor gene Rb by adsorbing miR-574-3p in a sponge form. Eur Rev Med Pharmacol Sci. 2020;24(17):8845–54. https://doi.org/10.26355/eurrev_202009_22824.

    Article  CAS  PubMed  Google Scholar 

  20. Lu J, Wang YH, Yoon C, Huang XY, Xu Y, Xie JW, et al. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877-3p to facilitate gastric cancer invasion and metastasis. Cancer Lett. 2020;471:38–48. https://doi.org/10.1016/j.canlet.2019.11.038.

    Article  CAS  PubMed  Google Scholar 

  21. Guo J, Su Y, Zhang M. Circ_0000140 restrains the proliferation, metastasis and glycolysis metabolism of oral squamous cell carcinoma through upregulating CDC73 via sponging miR-182-5p. Cancer Cell Int. 2020;20:407. https://doi.org/10.1186/s12935-020-01501-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dong ZR, Ke AW, Li T, Cai JB, Yang YF, Zhou W, et al. CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer. 2021;20(1):75. https://doi.org/10.1186/s12943-021-01361-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tu J, Chen W, Zheng L, Fang S, Zhang D, Kong C, et al. Circular RNA Circ0021205 Promotes cholangiocarcinoma progression through MiR-204–5p/RAB22A Axis. Front Cell Dev Biol. 2021;9:653207. https://doi.org/10.3389/fcell.2021.653207.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang S, Wang T, Gu P. microRNA-145-5p inhibits migration, invasion, and metastasis in hepatocellular carcinoma by inhibiting ARF6. Cancer Manag Res. 2021;13:3473–84. https://doi.org/10.2147/CMAR.S300678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhong X, Wen X, Chen L, Gu N, Yu X, Sui K. Long non-coding RNA KCNQ1OT1 promotes the progression of gastric cancer via the miR-145–5p/ARF6 axis. J Gene Med. 2021;23(5):e3330. https://doi.org/10.1002/jgm.3330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan S, Chen P, Li S. miR-145-5p inhibits the proliferation, migration, and invasion of esophageal carcinoma cells by targeting ABRACL. Biomed Res Int. 2021;2021:6692544. https://doi.org/10.1155/2021/6692544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wu W, Bai S, Zhu D, Li K, Dong W, He W, et al. Overexpression of malignant brain tumor domain containing protein 1 predicts a poor prognosis of prostate cancer. Oncol Lett. 2019;17(5):4640–6. https://doi.org/10.3892/ol.2019.10109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fu D, Lu C, Qu X, Li P, Chen K, Shan L, et al. LncRNA TTN-AS1 regulates osteosarcoma cell apoptosis and drug resistance via the miR-134-5p/MBTD1 axis. Aging (Albany NY). 2019;11(19):8374–85. https://doi.org/10.18632/aging.102325.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Language assistance in this manuscript was provided by TopEdit (https://www.topeditsci.com).

Funding

Our study was financed by the China Postdoctoral Science Foundation (2020M670865) and Natural Science Foundation of Jilin Province (YDZJ202201ZYTS251).

Author information

Authors and Affiliations

Authors

Contributions

QL and MH conceived the experiments. YC and HC performed the experiments. QL wrote the article. All authors made contributions to the study and approved publication of this work.

Corresponding author

Correspondence to Min Hu.

Ethics declarations

Conflict of interest

We declare no conflicting interests.

Ethical approval

Our research was permitted and supervised by the Ethics Committee of Stomatological Hospital of Jilin University. The OSCC patients were treated in line with the Deceleration of Helsinki and granted signed informed consent. The experiments with mice were permitted and supervised by the Ethics Committee of the First Hospital of Jilin University.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Che, H., Che, Y. et al. CircZNF236 facilitates malignant progression in oral squamous cell carcinoma by sequestering miR-145-5p. Clin Transl Oncol 25, 1690–1701 (2023). https://doi.org/10.1007/s12094-022-03064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03064-7

Keywords

Navigation