Skip to main content

Advertisement

Log in

Comprehensive analysis of ERCC3 prognosis value and ceRNA network in AML

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Background

Acute myeloid leukemia (AML) is a hematological malignancy with high molecular and clinical heterogeneity, and is the most common type of acute leukemia in adults. Due to limited treatment options, AML is prone to relapse and has a poor prognosis. Excision repair cross-complementing 3 (ERCC3) is an important member of nucleotide excision repair (NER) that is overexpressed in types of solid cancers and potentially regarded as a prognostic factor. However, its role in AML remains unclear. The purpose of this study was to explore ERCC3 expression and functions in AML.

Methods

The Cancer Genome Atlas (TCGA) and GEO (Gene Expression Omnibus) were used to test the accuracy of ERCC3 expression levels for AML diagnosis. Using online databases and R packages, we also explored the signaling pathway, epigenetic regulation, infiltration of immune cells, clinical prognostic value, and ceRNA network in AML.

Results

Our results revealed that ERCC3 expression was increased in AML and that high ERCC3 expression had good value for disease-free survival and overall survival in AML patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We found that ERCC3 and co-expressed genes were mainly involved in chemical carcinogenesis/reactive oxygen species, ubiquitin-mediated protein degradation and oxidative phosphorylation. In addition, almost all the m6A-related coding genes (except GF2BP1) were positively associated with ERCC3 expression. We also constructed a ceRNA regulatory network containing ERCC3 in AML and identified 6 pairs of ceRNA networks, indicating that ERCC3 expression is regulated by a noncoding RNA system.

Conclusion

This study demonstrated that ERCC3 was overexpressed in AML and that high ERCC3 expression can be considered a biomarker conducive to allo-HSCT in AML patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Related datasets of TCGA and GSE65409 could be downloaded from the TCGA and GEO websites.

References

  1. Khwaja A, Bjorkholm M, Gale RE, Levine RL, Jordan CT, Ehninger G, et al. Acute myeloid leukaemia. Nat Rev Dis Primers. 2016;2:16010.

    Article  PubMed  Google Scholar 

  2. Roman E, Smith A, Appleton S, Crouch S, Kelly R, Kinsey S, et al. Myeloid malignancies in the real-world: occurrence, progression and survival in the UK’s population-based haematological malignancy research network 2004–15. Cancer Epidemiol. 2016;42:186–98.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Li Z, Dend M, Zha J, Zhou Y, Fang Z, Bing Xu. Apatinib inhibits proliferation and induces apoptosis of acute myeloid leukemia stem/progenitor like cell line (kg1α cells) and its mechanism. Chin J Mod Appl Pharm. 2017;34(2):204–9.

    Google Scholar 

  4. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.

    Article  PubMed  Google Scholar 

  5. Vosberg S, Greif PA. Clonal evolution of acute myeloid leukemia from diagnosis to relapse. Genes Chromosomes Cancer. 2019;58(12):839–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lai C, Doucette K, Norsworthy K. Recent drug approvals for acute myeloid leukemia. J Hematol Oncol. 2019;12(1):100.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Blum WG, Mims AS. Treating acute myeloid leukemia in the modern era: a primer. Cancer. 2020;126(21):4668–77.

    Article  PubMed  Google Scholar 

  8. Burnett A, Wetzler M, Löwenberg B. Therapeutic advances in acute myeloid leukemia. J Clin Oncol. 2011;29(5):487–94.

    Article  PubMed  Google Scholar 

  9. Saeed SA, Logie C, Stunnenberg HG, Martens JHA. Genome-wide functions of PML-RARα in acute promyelocytic leukaemia. Br J Cancer. 2011;104(4):554–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Haferlach T, Meggendorfer M. More than a fusion gene: the RUNX1-RUNX1T1 AML. Blood. 2019;133(10):1006–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kelemen K. The role of nucleophosmin 1 (NPM1) mutation in the diagnosis and management of myeloid neoplasms. Life (Basel). 2022;12(1):109.

    CAS  PubMed  Google Scholar 

  12. Daver N, Schlenk RF, Russell NH, Levis MJ. Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia. 2019;33(2):299–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Figueroa ME, Abdel-Wahab O, Chao L, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18(6):553–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yichuan Xu, Lin Y, Luo Y, Yang Y, Long B, Fang Z, et al. RAD52 aptamer regulates DNA damage repair and STAT3 in BRCA1/BRCA2-deficient human acute myeloid leukemia. Oncol Rep. 2020;44(4):1455–66.

    Google Scholar 

  15. David L, Fernandez-Vidal A, Bertoli S, Grgurevic S, Lepage B, Deshaies D, et al. CHK1 as a therapeutic target to bypass chemoresistance in AML. Sci Signal. 2016;9(445):ra90.

    Article  PubMed  Google Scholar 

  16. Drapkin R, Reardon JT, Ansari A, Huang J-C, Zawel L, Ahn K, et al. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature. 1994;368(6473):769–72.

    Article  CAS  PubMed  Google Scholar 

  17. Coin F, Oksenych V, Egly J-M. Distinct roles for the XPB/p52 and XPD/p44 subcomplexes of TFIIH in damaged DNA opening during nucleotide excision repair. Mol Cell. 2007;26(2):245–56.

    Article  CAS  PubMed  Google Scholar 

  18. Fan L, DuPrez KT. XPB: An unconventional SF2 DNA helicase. Prog Biophys Mol Biol. 2015;117(2–3):174–81.

    Article  CAS  PubMed  Google Scholar 

  19. Guo Y, Pingfu F, Zhu H, Reed E, Remick SC, Petros W, et al. Correlations among ERCC1, XPB, UBE2I, EGF, TAL2 and ILF3 revealed by gene signatures of histological subtypes of patients with epithelial ovarian cancer. Oncol Rep. 2012;27(1):286–92.

    CAS  PubMed  Google Scholar 

  20. Zhang J, Huang J-Z, Zhang Y-Q, Zhang X, Zhao L-Y, Li C-G, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53: 102701.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vijai J, Topka S, Villano D, Ravichandran V, Maxwell KN, Maria A, et al. A recurrent ERCC3 truncating mutation confers moderate risk for breast cancer. Cancer Discov. 2016;6(11):1267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhibin Hu, Liang Xu, Shao M, Yuan J, Wang Yi, Wang F, et al. Polymorphisms in the two helicases ERCC2/XPD and ERCC3/XPB of the transcription factor IIH complex and risk of lung cancer: a case-control analysis in a Chinese population. Cancer Epidemiol Biomarkers Prev. 2006;15(7):1336–40.

    Article  Google Scholar 

  23. Qiang Xu, Zhang Z, Sun W, Baiqiang Hu. Haplotype analysis on relationship of ERCC2 and ERCC3 gene polymorphisms with osteosarcoma risk in Chinese young population. Mamm Genome. 2017;28(5–6):227–33.

    Google Scholar 

  24. Feki-Tounsi M, Khlifi R, Louati I, Fourati M, Mhiri M-N, Hamza-Chaffai A, et al. Polymorphisms in XRCC1, ERCC2, and ERCC3 DNA repair genes, CYP1A1 xenobiotic metabolism gene, and tobacco are associated with bladder cancer susceptibility in Tunisian population. Environ Sci Pollut Res Int. 2017;24(28):22476–84.

    Article  CAS  PubMed  Google Scholar 

  25. Wang S, Liu W, Ni Y, Wang L, Zhu Y, Shi Q, et al. Overexpression of ERCC3 is associated with poor prognosis in patients with pancreatic cancer. J Cancer. 2021;12(9):2550–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vasaikar SV, Straub P, Wang J, Zhang B. Linked Omics: analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Res. 2018;46(D1):D956–63.

    Article  CAS  PubMed  Google Scholar 

  27. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607–13.

    Article  CAS  PubMed  Google Scholar 

  28. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aran D, Zicheng H, Butte AJ. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol. 2017;18(1):220.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Xiao J, Bai J, Tian Yi, Yinwei Qu, Chen X, et al. Molecular characterization and clinical relevance of M(6)a regulators across 33 cancer types. Mol Cancer. 2019;18(1):137.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yuanbin R, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, et al. The multiMiR R package and database: integration of microRNA-target interactions along with their disease and drug associations. Nucleic Acids Res. 2014;42(17):e133.

    Article  Google Scholar 

  32. Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual analytics for mirna functional analysis and systems biology. Nucleic Acids Res. 2020;48(W1):W244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li J, Liu S, Zhou H, Lianghu Q, Yang J. StarBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(D1):D92–7.

    Article  CAS  PubMed  Google Scholar 

  34. Döhner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AML in adults: 2022 ELN recommendations from an international expert panel. Blood. 2022;140(12):1345–77.

    Article  PubMed  Google Scholar 

  35. Zhang J, Huang J, Zhang Y, Zhang X, Zhao L, Li C, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53:102701.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42.

    Article  CAS  PubMed  Google Scholar 

  37. Patil DP, Pickering BF, Jaffrey SR. Reading m6A in the Transcriptome: m6A-Binding Proteins. Trends Cell Biol. 2018;28(2):113–27.

    Article  CAS  PubMed  Google Scholar 

  38. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23(11):1369–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weng H, Huang H, Huizhe W, Qin X, Zhao BS, Dong L, et al. METTL14 inhibits hematopoietic stem/progenitor differentiation and promotes leukemogenesis via mRNA m6A modification. Cell Stem Cell. 2018;22(2):191–205.

    Article  CAS  PubMed  Google Scholar 

  40. Barbieri I, Tzelepis K, Pandolfini L, Shi J, Millán-Zambrano G, Robson SC, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature. 2017;552(7683):126–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sorci M, Ianniello Z, Cruciani S, Larivera S, Ginistrelli LC, Capuano E, et al. METTL3 regulates WTAP protein homeostasis. Cell Death Dis. 2018;9(8):796.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kouhsar M, Jamalkandi SA, Moeini A, Masoudi-Nejad A. Detection of novel biomarkers for early detection of non-muscle-invasive bladder cancer using competing endogenous RNA network analysis. Sci Rep. 2019;9(1):8434.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen J-B, Zhu Y-W, Guo Xi, Cui Yu, Liu P-H, Li C, et al. Microarray expression profiles analysis revealed lncRNA OXCT1-AS1 promoted bladder cancer cell aggressiveness via miR-455-5p/JAK1 signaling. J Cell Physiol. 2019;234(8):13592–601.

    Article  CAS  PubMed  Google Scholar 

  44. Chen F, Li Z, Deng C, Yan H. Integration analysis for novel lncRNA markers predicting tumor recurrence in human colon adenocarcinoma. J Transl Med. 2019;17(1):299.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Medical and Health Projects in Zhejiang Province (2021KY400), Jiangsu Higher Education Institution Innovative Research Team for Science and Technology (2021), Key Technology Program of Suzhou People’s Livelihood Technology Projects (Grant No. SKY2021029), The Open Project of Jiangsu Biobank of Clinical Resources (TC2021B009), LingYan Programs of the Suzhou Vocational Health College (Grant No. szwzy202210, szwzy202011), Application Study Project of Public Welfare of Zhejiang Province (GF22H085719), Qing‐Lan Project of Jiangsu Province in China (2021, 2022). The data that support the findings of this study are available from the corresponding author upon reasonable request.

Funding

Medical Science and Technology Project of Zhejiang Province, 2021KY400,SongBai Liu, Qinglan Project of Jiangsu Province of China, 2022, Yao Chen

Author information

Authors and Affiliations

Authors

Contributions

XB, YC, XL, JD, HL, NL, ZT, performed the research, analyzed the data, and reviewed the manuscript; SBL, WG, JH, ZT, designed the research, analyzed and interpreted the data, and wrote the manuscript.

Corresponding authors

Correspondence to Jingsheng Hua, Weiqiang Guo or Song-Bai Liu.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

No ethical questions.

Informed consent

The data used in this study came from TCGA and GEO database, and this study was in full compliance with the published guidelines of public databases. Accordingly, no additional informed consent was provided.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, X., Chen, Y., Lou, X. et al. Comprehensive analysis of ERCC3 prognosis value and ceRNA network in AML. Clin Transl Oncol 25, 1053–1066 (2023). https://doi.org/10.1007/s12094-022-03012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-03012-5

Keywords

Navigation