Skip to main content

Advertisement

Log in

Hypoxia promotes epithelial–mesenchymal transition in lung cancer cells via regulating the NRF2/miR‑27a/BUB1 pathway

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Purpose

Lung cancer (LC) is the most common malignancy in the world. It is well that hypoxia is common in lung cancer, which contributes to lung cancer progression and metastasis [1]. miRNA-27a as a repressor factor is a lowly expression within non-small cell lung cancer (NSCLC). However, the molecular mechanism between miR-27a and hypoxia in lung cancer progression remains poorly understood. This study aims to explore hypoxia promotes epithelial-mesenchymal transition in lung cancer cells via regulating the NRF2/miR‑27a/BUB1 pathway.

Methods

We detect the expression of miR-27a after exposure to hypoxia conditions in lung cancer cells via qPCR. Using MTT assay and colony assay to assess the ability of proliferation in lung cancer cells under hypoxia or transfect miR-27a mimics. The capability of migration and invasion was evaluated by wound healing assay and Boyden-chamber assay. The mRNA and protein expression of EMT markers was respectively detected by qPCR and western blot. We detected NRF2 occupancy at the miR-27a promoter by ChIP-Seq analysis. Meanwhile, the luciferase assay verified BUB1 as a direct target of miR-27a.

Results

We found hypoxia promotes lung cancer cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) process by inhibiting the miR-27a expression. miR-27a mimics significantly reduced the promotion effect of hypoxia on the invasion and proliferation of lung cancer cells. NRF2 as regulating the oxidation/anti-oxidation factor was activated under hypoxia conditions. The activation of NRF2 repressed miR-27a expression. On the contrary, the inhibitory effect of hypoxia on miR-27a was reversed when the NFE2L2 gene was silenced. Ectopic expression of NRF2 inhibited miR-27a expression under normoxia. We further validated BUB1 as a direct target of the miR-27a by luciferase assay.

Conclusion

Hypoxia promotes invasion and epithelial-mesenchymal transition of Lung cancer cells by regulating the NRF2/miR-27a/BUB1 axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jing X, et al., Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer, 2019. 18(1): p.157.

    Article  Google Scholar 

  2. Verduzco D, Lloyd M, Xu L, Ibrahim-Hashim A, Balagurunathan Y, Gatenby RA, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10(3): e0120958.

    Article  Google Scholar 

  3. Salem A, Asselin MC, Reymen B, Jackson A, Lambin P, West CML, O'Connor JPB, Faivre-Finn C. Targeting hypoxia to improve non-small cell lung cancer outcome. J Natl Cancer Inst. 2018;110(1):14–30.

    Article  CAS  Google Scholar 

  4. Kuper A, Baumann J, Gopelt K, Baumann M, Sanger C, Metzen E, et al. Overcoming hypoxia-induced resistance of pancreatic and lung tumor cells by disrupting the PERK-NRF2-HIF-axis. Cell Death Dis. 2021;12(1):82.

    Article  Google Scholar 

  5. Lee SL, Ryu H, Son AR, Seo B, Kim J, Jung SY, et al. TGF-beta and hypoxia/reoxygenation promote radioresistance of A549 lung cancer cells through activation of Nrf2 and EGFR. Oxid Med Cell Longev. 2016;2016:6823471.

    Article  Google Scholar 

  6. Sanchez-Ortega M, Carrera AC, Garrido A. Role of NRF2 in lung cancer. Cells. 2021;10(8):1–28.

    Article  Google Scholar 

  7. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10(10):704–14.

    Article  CAS  Google Scholar 

  8. Geng Y, Deng L, Su D, Xiao J, Ge D, Bao Y, et al. Identification of crucial microRNAs and genes in hypoxia-induced human lung adenocarcinoma cells. Onco Targets Ther. 2016;9:4605–16.

    Article  CAS  Google Scholar 

  9. Li W, Huang K, Wen F, Cui G, Guo H, He Z, et al. Intermittent hypoxia-induced downregulation of microRNA-320b promotes lung cancer tumorigenesis by increasing CDT1 via USP37. Mol Ther Nucleic Acid. 2021;24:528–41.

    Article  CAS  Google Scholar 

  10. Heegaard NH, Schetter AJ, Welsh JA, Yoneda M, Bowman ED, Harris CC. Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. Int J Cancer. 2012;130(6):1378–86.

    Article  CAS  Google Scholar 

  11. Acunzo M, Romano G, Palmieri D, Lagana A, Garofalo M, Balatti V, et al. Cross-talk between MET and EGFR in non-small cell lung cancer involves miR-27a and Sprouty2. Proc Natl Acad Sci USA. 2013;110(21):8573–8.

    Article  CAS  Google Scholar 

  12. Liang Q, Zhang H. MAP17 contributes to non-small cell lung cancer progression via suppressing miR-27a-3p expression and p38 signaling pathway. Cancer Biol Ther. 2021;22(1):19–29.

    Article  CAS  Google Scholar 

  13. Li X, Lv F, Li F, Du M, Liang Y, Ju S, et al. LINC01089 inhibits tumorigenesis and epithelial-mesenchymal transition of non-small cell lung cancer via the miR-27a/SFRP1/Wnt/beta-catenin axis. Front Oncol. 2020;10: 532581.

    Article  Google Scholar 

  14. Lu X, Kang N, Ling X, Pan M, Du W, Gao S. MiR-27a-3p promotes non-small cell lung cancer through SLC7A11-mediated-ferroptosis. Front Oncol. 2021;11: 759346.

    Article  Google Scholar 

  15. Yang Y, Zang A, Jia Y, Shang Y, Zhang Z, Ge K, et al. Genistein inhibits A549 human lung cancer cell proliferation via miR-27a and MET signaling. Oncol Lett. 2016;12(3):2189–93.

    Article  CAS  Google Scholar 

  16. Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc. 2006;1(5):2315–9.

    Article  CAS  Google Scholar 

  17. Ruan J, Zhang L, Yan L, Liu Y, Yue Z, Chen L, et al. Inhibition of hypoxia-induced epithelial mesenchymal transition by luteolin in non-small cell lung cancer cells. Mol Med Rep. 2012;6(1):232–8.

    CAS  Google Scholar 

  18. Hiemstra S, Niemeijer M, Koedoot E, Wink S, Klip JE, Vlasveld M, et al. Comprehensive landscape of Nrf2 and p53 pathway activation dynamics by oxidative stress and DNA damage. Chem Res Toxicol. 2017;30(4):923–33.

    Article  CAS  Google Scholar 

  19. Singh A, Daemen A, Nickles D, Jeon SM, Foreman O, Sudini K, et al. NRF2 activation promotes aggressive lung cancer and associates with poor clinical outcomes. Clin Cancer Res. 2021;27(3):877–88.

    Article  CAS  Google Scholar 

  20. Hammad A, Namani A, Elshaer M, Wang XJ, Tang X. “NRF2 addiction” in lung cancer cells and its impact on cancer therapy. Cancer Lett. 2019;467:40–9.

    Article  CAS  Google Scholar 

  21. Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer. 2019;18(1):40.

    Article  Google Scholar 

  22. Shi Y, Fan S, Wu M, Zuo Z, Li X, Jiang L, et al. YTHDF1 links hypoxia adaptation and non-small cell lung cancer progression. Nat Commun. 2019;10(1):4892.

    Article  CAS  Google Scholar 

  23. Babar IA, Czochor J, Steinmetz A, Weidhaas JB, Glazer PM, Slack FJ. Inhibition of hypoxia-induced miR-155 radiosensitizes hypoxic lung cancer cells. Cancer Biol Ther. 2011;12(10):908–14.

    Article  CAS  Google Scholar 

  24. Xia M, Sheng L, Qu W, Xue X, Chen H, Zheng G, et al. MiR-194–5p enhances the sensitivity of nonsmall-cell lung cancer to doxorubicin through targeted inhibition of hypoxia-inducible factor-1. World J Surg Oncol. 2021;19(1):174.

    Article  Google Scholar 

  25. Zhang H, Zhu S, Zhang C, Liu W, Zhu J. miR-199a-5p inhibits the proliferation of rat airway smooth muscle cells and the expression of hypoxia inducible factor 1 alpha under hypoxia conditions. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2015;31(9):1183–8.

    CAS  Google Scholar 

  26. Byun Y, Choi YC, Jeong Y, Lee G, Yoon S, Jeong Y, et al. MiR-200c downregulates HIF-1alpha and inhibits migration of lung cancer cells. Cell Mol Biol Lett. 2019;24:28.

    Article  Google Scholar 

  27. Li Y, Zhao L, Qi Y, Yang X. MicroRNA214 upregulates HIF1alpha and VEGF by targeting ING4 in lung cancer cells. Mol Med Rep. 2019;19(6):4935–45.

    CAS  Google Scholar 

  28. Zhang J, Han L, Yu J, Li H, Li Q. miR-224 aggravates cancer-associated fibroblast-induced progression of non-small cell lung cancer by modulating a positive loop of the SIRT3/AMPK/mTOR/HIF-1alpha axis. Aging (Albany NY). 2021;13(7):10431–49.

    Article  CAS  Google Scholar 

  29. Ge YL, Jin FL, Zhang DH. Radio-sensitizing effects of microRNA-27a elevation in lung cancer cells by inhibiting ZEB1 expression and activating DNA damage repair pathway. J Biol Regul Homeost Agent. 2021;35(1):45–57.

    CAS  Google Scholar 

  30. He W, Qin M, Cai Y, Gao X, Cao S, Wang Z, et al. Downregulation of HOXC6 by miR-27a ameliorates gefitinib resistance in non-small cell lung cancer. Am J Cancer Res. 2021;11(9):4329–46.

    CAS  Google Scholar 

  31. Lignitto L, LeBoeuf SE, Homer H, Jiang S, Askenazi M, Karakousi TR, et al. Nrf2 activation promotes lung cancer metastasis by inhibiting the degradation of Bach1. Cell. 2019;178(2):316–29.

    Article  CAS  Google Scholar 

  32. Bakhtiyari N, Sharifi A, Aftabi Y, Gilani N, Zafari V, Ansarin A, et al. Association between NOX4 and Nrf2 genes in non-small-cell lung carcinoma: a case-control study. Rep Biochem Mol Biol. 2021;10(2):327–33.

    Article  CAS  Google Scholar 

  33. Wang L, Yang X, An N, Liu J. Bioinformatics analysis of BUB1 expression and gene regulation network in lung adenocarcinoma. Transl Cancer Res. 2020;9(8):4820–33.

    Article  CAS  Google Scholar 

  34. Ricke RM, Jeganathan KB, van Deursen JM. BUB1 overexpression induces aneuploidy and tumor formation through aurora B kinase hyperactivation. J Cell Biol. 2011;193(6):1049–64.

    Article  CAS  Google Scholar 

  35. Nyati S, Schinske-Sebolt K, Pitchiaya S, Chekhovskiy K, Chator A, Chaudhry N, et al. The kinase activity of the Ser/Thr kinase BUB1 promotes TGF-beta signaling. Sci Signal. 2015. https://doi.org/10.1126/scisignal.2005379.

    Article  Google Scholar 

  36. Qi W, Bai Y, Wang Y, Liu L, Zhang Y, Yu Y, et al. BUB1 predicts poor prognosis and immune status in liver hepatocellular carcinoma. APMIS. 2022;130(7):371–382.

  37. Wang Z, Katsaros D, Shen Y, Fu Y, Canuto EM, Benedetto C, et al. Biological and clinical significance of MAD2L1 and BUB1, genes frequently appearing in expression signatures for breast cancer prognosis. PLoS ONE. 2015;10(8): e0136246.

    Article  Google Scholar 

  38. Guo L, Li H, Li W, Tang J. Construction and investigation of a combined hypoxia and stemness index lncRNA-associated ceRNA regulatory network in lung adenocarcinoma. BMC Med Genom. 2020;13(1):166.

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by Sichuan Medical Association (Q18010, 2018-ZRQN-093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Ren.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest in this study.

Ethical approval

This project has been approved by Southwest Medical University for experimental animal ethics. The approval number is:20211009–032.

Human and animal rights

The study was approved by the Southwest Medical University ethics committee. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Deng, J., Wang, S. et al. Hypoxia promotes epithelial–mesenchymal transition in lung cancer cells via regulating the NRF2/miR‑27a/BUB1 pathway. Clin Transl Oncol 25, 510–522 (2023). https://doi.org/10.1007/s12094-022-02965-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02965-x

Keywords

Navigation