Skip to main content

Advertisement

Log in

CDC7 as a novel biomarker and druggable target in cancer

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Due to the bottlenecks encountered in traditional treatment for tumor, more effective drug targets need to be developed. Cell division cycle 7 kinase plays an important role in DNA replication, DNA repair and recombination signaling pathways. In this review, we first describe recent studies on the role of CDC7 in DNA replication in normal human tissues, and then we integrate new evidence focusing on the important role of CDC7 in replication stress tolerance of tumor cells and its impact on the prognosis of clinical oncology patients. Finally, we comb through the CDC7 inhibitors identified in recent studies as a reference for further research in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CDC7:

Cell division cycle 7

OS:

Overall survival

PD-1:

Programmed cell death 1

PD-L1:

Programmed cell death 1 ligand 1

EGFR:

Epidermal growth factor receptor

CDK9:

Cyclin-dependent kinase 9

DFS:

Disease-free survival

IRAK1:

Interleukin-1 receptor-associated kinase 1

MCM2:

Minichromosome maintenance complex component 2

ASK:

DBF4 zinc finger

MCM:

Minichromosome maintenance protein complex

CDC45:

Cell division cycle 45

CDK:

Cyclin-dependent kinase

MRE11:

Double-strand break repair protein MRE11A

ATR:

ATR serine/threonine kinase

CHK1:

Serine/threonine-protein kinase chk1

RIF1:

Replication timing regulatory factor 1

PP1:

Protein phosphatase 1

CK1γ1:

Casein kinase 1 gamma 1

MYB:

MYB Proto-oncogene, transcription factor

PGK1:

Protein kinase CGMP-dependent 1

MYC:

MYC proto-oncogene, BHLH transcription factor

CCND1:

Cyclin d1

RAD54L:

DNA repair and recombination protein RAD54-like

References

  1. Cheng Z, Wei-Qi J, Jin D. New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochim Biophys Acta Rev Cancer. 2020. https://doi.org/10.1016/j.bbcan.2020.188382.

    Article  PubMed  Google Scholar 

  2. Vogel A, Qin S, Kudo M, Su Y, Hudgens S, Yamashita T, Yoon JH, Fartoux L, Simon K, Lopez C, Sung M, Mody K, Ohtsuka T, Tamai T, Bennett L, Meier G, Breder V. Lenvatinib versus sorafenib for first-line treatment of unresectable hepatocellular carcinoma: patient-reported outcomes from a randomised, open-label, non-inferiority, phase 3 trial. Lancet Gastroenterol Hepatol. 2021. https://doi.org/10.1016/S2468-1253(21)00110-2.

    Article  PubMed  Google Scholar 

  3. Liu D, Gao S, Zhai Y, Yang X, Zhai G. Research progress of tumor targeted drug delivery based on PD-1/PD-L1. Int J Pharm. 2022. https://doi.org/10.1016/j.ijpharm.2022.121527.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yamada M, Masai H, Bartek J. Regulation and roles of Cdc7 kinase under replication stress. Cell Cycle. 2014. https://doi.org/10.4161/cc.29251.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Masai H. A novel p53-Cdc7 link induced by genotoxic stress. Cell Cycle. 2017. https://doi.org/10.1080/15384101.2017.1304746.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liang XL, Wang YL, Wang PR. MiR-200a with CDC7 as a direct target declines cell viability and promotes cell apoptosis in Wilm’s tumor via Wnt/beta-catenin signaling pathway. Mol Cell Biochem. 2021. https://doi.org/10.1007/s11010-021-04090-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cao JX, Lu Y. Targeting CDC7 improves sensitivity to chemotherapy of esophageal squamous cell carcinoma. Onco Targets Ther. 2019. https://doi.org/10.2147/OTT.S183629.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gad SA, Ali HEA, Gaballa R, Abdelsalam RM, Zerfaoui M, Ali HI, Salama SH, Kenawy SA, Kandil E, Abd EZY. Targeting CDC7 sensitizes resistance melanoma cells to BRAF(V600E)-specific inhibitor by blocking the CDC7/MCM2-7 pathway. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-50732-w.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li Q, Xie W, Wang N, Li C, Wang M. CDC7-dependent transcriptional regulation of RAD54L is essential for tumorigenicity and radio-resistance of glioblastoma. Transl Oncol. 2018. https://doi.org/10.1016/j.tranon.2018.01.003.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mclaughlin RP, He J, van der Noord VE, Redel J, Foekens JA, Martens JWM, Smid M, Zhang Y, van de Water B. A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy. Breast Cancer Res. 2019. https://doi.org/10.1186/s13058-019-1161-9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhuang L, Yang Z, Meng Z. Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in tumor tissues predicted worse overall survival and disease-free survival in hepatocellular carcinoma patients. Biomed Res Int. 2018. https://doi.org/10.1155/2018/7897346.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang C, Vegna S, Jin H, Benedict B, Lieftink C, Ramirez C, de Oliveira RL, Morris B, Gadiot J, Wang W, du Chatinier A, Wang L, Gao D, Evers B, Jin G, Xue Z, Schepers A, Jochems F, Sanchez AM, Mainardi S, Te Riele H, Beijersbergen RL, Qin W, Akkari L, Bernards R. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019. https://doi.org/10.1038/s41586-019-1607-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guo Y, Wang J, Benedict B, Yang C, van Gemert F, Ma X, Gao D, Wang H, Zhang S, Lieftink C, Beijersbergen RL, Te Riele H, Qiao X, Gao Q, Sun C, Qin W, Bernards R, Wang C. Targeting CDC7 potentiates ATR-CHK1 signaling inhibition through induction of DNA replication stress in liver cancer. Genome Med. 2021. https://doi.org/10.1186/s13073-021-00981-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Huggett MT, Tudzarova S, Proctor I, Loddo M, Keane MG, Stoeber K, Williams GH, Pereira SP. Cdc7 is a potent anti-cancer target in pancreatic cancer due to abrogation of the DNA origin activation checkpoint. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.7611.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jaafari-Ashkavandi Z, Ashraf MJ, Abbaspoorfard AA. Overexpression of CDC7 in malignant salivary gland tumors correlates with tumor differentiation. Braz J Otorhinolaryngol. 2019. https://doi.org/10.1016/j.bjorl.2017.11.004.

    Article  PubMed  Google Scholar 

  16. Jin S, Ma H, Yang W, Ju H, Wang L, Zhang Z. Cell division cycle 7 is a potential therapeutic target in oral squamous cell carcinoma and is regulated by E2F1. J Mol Med (Berl). 2018. https://doi.org/10.1007/s00109-018-1636-7.

    Article  Google Scholar 

  17. Zografos E, Anagnostopoulos AK, Papadopoulou A, Legaki E, Zagouri F, Marinos E, Tsangaris GT, Gazouli M. Serum proteomic signatures of male breast cancer. Cancer Genomics Proteom. 2019. https://doi.org/10.21873/cgp.20118.

    Article  Google Scholar 

  18. Forest F, Laville D, Da Cruz V, Casteillo F, Clemenson A, Yvorel V, Picot T. WHO grading system for invasive pulmonary lung adenocarcinoma reveals distinct molecular signature: an analysis from the cancer genome atlas database. Exp Mol Pathol. 2022. https://doi.org/10.1016/j.yexmp.2022.104756.

    Article  PubMed  Google Scholar 

  19. Wang Y, Wang Y, Duan X, Wang Y, Zhang Z. Interleukin-1 receptor-associated kinase 1 correlates with metastasis and invasion in endometrial carcinoma. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.26416.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ma Q, Zhang J, Zhang M, Lan H, Yang Q, Li C, Zeng L. MicroRNA-29b targeting of cell division cycle 7-related protein kinase (CDC7) regulated vascular smooth muscle cell (VSMC) proliferation and migration. Ann Transl Med. 2020. https://doi.org/10.21037/atm-20-6856.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rainey MD, Quinlan A, Cazzaniga C, Mijic S, Martella O, Krietsch J, Goder A, Lopes M, Santocanale C. CDC7 kinase promotes MRE11 fork processing, modulating fork speed and chromosomal breakage. EMBO Rep. 2020. https://doi.org/10.15252/embr.201948920.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dick SD, Federico S, Hughes SM, Pye VE, O’Reilly N, Cherepanov P. Structural basis for the activation and target site specificity of CDC7 kinase. Structure. 2020. https://doi.org/10.1016/j.str.2020.05.010.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Labib K. How do Cdc7 and cyclin-dependent kinases trigger the initiation of chromosome replication in eukaryotic cells? Genes Dev. 2010. https://doi.org/10.1101/gad.1933010.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moiseeva T, Hood B, Schamus S, O’Connor MJ, Conrads TP, Bakkenist CJ. ATR kinase inhibition induces unscheduled origin firing through a Cdc7-dependent association between GINS and And-1. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-01401-x.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moiseeva TN, Yin Y, Calderon MJ, Qian C, Schamus-Haynes S, Sugitani N, Osmanbeyoglu HU, Rothenberg E, Watkins SC, Bakkenist CJ. An ATR and CHK1 kinase signaling mechanism that limits origin firing during unperturbed DNA replication. Proc Natl Acad Sci U S A. 2019. https://doi.org/10.1073/pnas.1903418116.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rainey MD, Bennett D, O’Dea R, Zanchetta ME, Voisin M, Seoighe C, Santocanale C. ATR restrains DNA synthesis and mitotic catastrophe in response to CDC7 inhibition. Cell Rep. 2020. https://doi.org/10.1016/j.celrep.2020.108096.

    Article  PubMed  Google Scholar 

  27. Li Z, Xu X. Post-Translational modifications of the mini-chromosome maintenance proteins in DNA replication. Genes (Basel). 2019. https://doi.org/10.3390/genes10050331.

    Article  PubMed Central  Google Scholar 

  28. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell. 2010. https://doi.org/10.1016/j.molcel.2010.09.019.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bian R, Dang W, Song X, Liu L, Jiang C, Yang Y, Li Y, Li L, Li X, Hu Y, Bao R, Liu Y. Rac GTPase activating protein 1 promotes gallbladder cancer via binding DNA ligase 3 to reduce apoptosis. Int J Biol Sci. 2021. https://doi.org/10.7150/ijbs.58857.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang CC, Suzuki M, Yamakawa S, Uno S, Ishii A, Yamazaki S, Fukatsu R, Fujisawa R, Sakimura K, Tsurimoto T, Masai H. Claspin recruits Cdc7 kinase for initiation of DNA replication in human cells. Nat Commun. 2016. https://doi.org/10.1038/ncomms12135.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang CC, Kato H, Shindo M, Masai H. Cdc7 activates replication checkpoint by phosphorylating the Chk1-binding domain of Claspin in human cells. Elife. 2019. https://doi.org/10.7554/eLife.50796.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lin YL, Pasero P. Replication stress: from chromatin to immunity and beyond. Curr Opin Genet Dev. 2021. https://doi.org/10.1016/j.gde.2021.08.004.

    Article  PubMed  Google Scholar 

  33. Gaillard H, Garcia-Muse T, Aguilera A. Replication stress and cancer. Nat Rev Cancer. 2015. https://doi.org/10.1038/nrc3916.

    Article  PubMed  Google Scholar 

  34. Datta A, Ghatak D, Das S, Banerjee T, Paul A, Butti R, Gorain M, Ghuwalewala S, Roychowdhury A, Alam SK, Das P, Chatterjee R, Dasgupta M, Panda CK, Kundu GC, Roychoudhury S. p53 gain-of-function mutations increase Cdc7-dependent replication initiation. EMBO Rep. 2017. https://doi.org/10.15252/embr.201643347.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li X, Qian X, Jiang H, Xia Y, Zheng Y, Li J, Huang BJ, Fang J, Qian CN, Jiang T, Zeng YX, Lu Z. Nuclear PGK1 alleviates ADP-dependent inhibition of CDC7 to promote DNA replication. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.09.007.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hills SA, Diffley JF. DNA replication and oncogene-induced replicative stress. Curr Biol. 2014. https://doi.org/10.1016/j.cub.2014.04.012.

    Article  PubMed  Google Scholar 

  37. Sugiyama T, Chen Y. Biochemical reconstitution of UV-induced mutational processes. Nucleic Acids Res. 2019. https://doi.org/10.1093/nar/gkz335.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tartarone A, Roviello G, Lerose R, Roudi R, Aieta M, Zoppoli P. Anti-PD-1 versus anti-PD-L1 therapy in patients with pretreated advanced non-small-cell lung cancer: a meta-analysis. Future Oncol. 2019. https://doi.org/10.2217/fon-2018-0868.

    Article  PubMed  Google Scholar 

  39. Petrelli F, Ferrara R, Signorelli D, Ghidini A, Proto C, Roudi R, Sabet MN, Facelli S, Garassino MC, Luciani A, Roviello G. Immune checkpoint inhibitors and chemotherapy in first-line NSCLC: a meta-analysis. Immunotherapy. 2021. https://doi.org/10.2217/imt-2020-0224.

    Article  PubMed  Google Scholar 

  40. Sato H, Niimi A, Yasuhara T, Permata TBM, Hagiwara Y, Isono M, Nuryadi E, Sekine R, Oike T, Kakoti S, Yoshimoto Y, Held KD, Suzuki Y, Kono K, Miyagawa K, Nakano T, Shibata A. DNA double-strand break repair pathway regulates PD-L1 expression in cancer cells. Nat Commun. 2017. https://doi.org/10.1038/s41467-017-01883-9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Irie T, Asami T, Sawa A, Uno Y, Hanada M, Taniyama C, Funakoshi Y, Masai H, Sawa M. Discovery of novel furanone derivatives as potent Cdc7 kinase inhibitors. Eur J Med Chem. 2017. https://doi.org/10.1016/j.ejmech.2017.02.030.

    Article  PubMed  Google Scholar 

  42. Irie T, Asami T, Sawa A, Uno Y, Taniyama C, Funakoshi Y, Masai H, Sawa M. Discovery of AS-0141, a potent and selective inhibitor of CDC7 kinase for the treatment of solid cancers. J Med Chem. 2021. https://doi.org/10.1021/acs.jmedchem.1c01319.

    Article  PubMed  Google Scholar 

  43. Iwai K, Nambu T, Kashima Y, Yu J, Eng K, Miyamoto K, Kakoi K, Gotou M, Takeuchi T, Kogame A, Sappal J, Murai S, Haeno H, Kageyama SI, Kurasawa O, Niu H, Kannan K, Ohashi A. A CDC7 inhibitor sensitizes DNA-damaging chemotherapies by suppressing homologous recombination repair to delay DNA damage recovery. Sci Adv. 2021. https://doi.org/10.1126/sciadv.abf0197.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Iwai K, Nambu T, Dairiki R, Ohori M, Yu J, Burke K, Gotou M, Yamamoto Y, Ebara S, Shibata S, Hibino R, Nishizawa S, Miyazaki T, Homma M, Oguro Y, Imada T, Cho N, Uchiyama N, Kogame A, Takeuchi T, Kurasawa O, Yamanaka K, Niu H, Ohashi A. Molecular mechanism and potential target indication of TAK-931, a novel CDC7-selective inhibitor. Sci Adv. 2019. https://doi.org/10.1126/sciadv.aav3660.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhou X, Ouerdani A, Diderichsen PM, Gupta N. Population pharmacokinetics of TAK-931, a cell division cycle 7 kinase inhibitor, in patients with advanced solid tumors. J Clin Pharmacol. 2021. https://doi.org/10.1002/jcph.1974.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sasi NK, Tiwari K, Soon FF, Bonte D, Wang T, Melcher K, Xu HE, Weinreich M. The potent Cdc7-Dbf4 (DDK) kinase inhibitor XL413 has limited activity in many cancer cell lines and discovery of potential new DDK inhibitor scaffolds. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0113300.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Koltun ES, Tsuhako AL, Brown DS, Aay N, Arcalas A, Chan V, Du H, Engst S, Ferguson K, Franzini M, Galan A, Holst CR, Huang P, Kane B, Kim MH, Li J, Markby D, Mohan M, Noson K, Plonowski A, Richards SJ, Robertson S, Shaw K, Stott G, Stout TJ, Young J, Yu P, Zaharia CA, Zhang W, Zhou P, Nuss JM, Xu W, Kearney PC. Discovery of XL413, a potent and selective CDC7 inhibitor. Bioorg Med Chem Lett. 2012. https://doi.org/10.1016/j.bmcl.2012.04.024.

    Article  PubMed  Google Scholar 

  48. Erbayraktar Z, Alural B, Erbayraktar RS, Erkan EP. Cell division cycle 7-kinase inhibitor PHA-767491 hydrochloride suppresses glioblastoma growth and invasiveness. Cancer Cell Int. 2016. https://doi.org/10.1186/s12935-016-0364-8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen EW, Tay NQ, Brzostek J, Gascoigne NRJ, Rybakin V. A dual inhibitor of Cdc7/Cdk9 potently suppresses T cell activation. Front Immunol. 2019. https://doi.org/10.3389/fimmu.2019.01718.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sawa M, Masai H. Drug design with Cdc7 kinase: a potential novel cancer therapy target. Drug Des Devel Ther. 2009. https://doi.org/10.2147/dddt.s4303.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technological Innovation Major Base of Guangxi (No. 2018-15-Z04), Guangxi Key Research and Development Project (No. AB20117001), Guangxi science and technology bases and talent special project (No. AD17129062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Huang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This study did not involve human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, R., Huang, Y. CDC7 as a novel biomarker and druggable target in cancer. Clin Transl Oncol 24, 1856–1864 (2022). https://doi.org/10.1007/s12094-022-02853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-022-02853-4

Keywords

Navigation