Skip to main content

Advertisement

Log in

Perspective on immune oncology with liquid biopsy, peripheral blood mononuclear cells, and microbiome with non-invasive biomarkers in cancer patients

  • Review Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Antibodies against immune checkpoint inhibitors such as anti-programmed cell death protein 1 (PD-1) and anti-programmed death ligand 1 (PD-L1) play a key role in the treatment of advanced lung cancer. To examine the clinical benefits of these agents, preclinical and clinical studies have been conducted to identify definitive biomarkers associated with cancer status. Analysis of the blood and feces of tumor patients has attracted attention in recent studies attempting to identify non-invasive biomarkers such as cytokines, soluble PD-L1, peripheral blood mononuclear cells, and gut microbiota. These factors are believed to interact with each other to produce synergistic effects and contribute to the formation of the tumor immune microenvironment through the seven steps of the cancer immunity cycle. The immunogram was first introduced as a novel indicator to define the immunity status of cancer patients. In this review, we discuss the progress in the identification of predictive biomarkers as well as future prospects for anti-PD-1/PD-L1 therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

CtDNA:

Circulating tumor DNA

ERCC-1:

Excision repair cross complementation group 1

IHC:

Immunohistochemistry

Inos:

Inducible nitric oxide synthase

IGS:

Immunogram scores

MMP-13:

Matrix metalloproteinase-13

mDCs:

Mature dendritic cells

MSCs:

Mesenchymal stromal cells

MDSC:

Myeloid-derived suppressor cell

NSCLC:

Non-small cell lung cancer

OS:

Overall survival

ORR:

Overall response rate

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed death ligand 1

PFS:

Progression-free survival

pSTAT3:

Phosphorylated STAT3

sPD-L1:

Soluble PD-L1

TCR:

T cell receptor

Treg:

T regulatory cell

VEGF:

Vascular endothelial growth factor

References

  1. Okazaki T, Honjo T. PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol. 2007;19:813–24.

    Article  PubMed  CAS  Google Scholar 

  2. Hodi FS, Dranoff G. The biologic importance of tumor–infiltrating lymphocytes. J Cutan Pathol. 2010;37:48–53.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kloor M. Lymphocyte infiltration and prognosis in colorectal cancer. Lancet Oncol. 2009;10:840–1.

    Article  PubMed  Google Scholar 

  4. Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8:239–45.

    Article  PubMed  CAS  Google Scholar 

  5. Guan J, Lim KS, Mekhail T, Chang CC. Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: a key player against various cancers. Arch Pathol Lab Med. 2017;141:851–61.

    Article  PubMed  Google Scholar 

  6. Mu CY, Huang JA, Chen Y, Chen C, Zhang XG. High expression of PD-L1 in lung cancer may contribute to poor prognosis and tumor cells immune escape through suppressing tumor-infiltrating dendritic cells maturation. Med Oncol. 2011;28:682–8.

    Article  PubMed  CAS  Google Scholar 

  7. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14:847–56.

    Article  PubMed  CAS  Google Scholar 

  8. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti–PD–1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Brahmer JR, Drake CG, Wollner I, Powderly JD, Picus J, Sharfman WH, et al. Phase I study of single–agent anti-programmed death–1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28:3167–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Callahan MK, Postow MA, Wolchok JD. Targeting T cell co-receptors for cancer therapy. Immunity. 2016;44:1069–78.

    Article  PubMed  CAS  Google Scholar 

  12. Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, et al. Pembrolizumab versus chemotherapy for pd–l1–positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  PubMed  CAS  Google Scholar 

  13. Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for pd-l1 expression in non-small cell lung cancer. JAMA Oncol. 2017;3:1051–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Carbone DP, Reck M, Paz-Ares L, Creelan B, Horn L, Steins M, et al. First-line nivolumab in stage IV or recurrent non-small-cell lung cancer. N Engl J Med. 2017;376:2415–26.

    Article  PubMed  CAS  Google Scholar 

  17. Zhu X, Lang J. Soluble PD–1 and PD–L1: predictive and prognostic significance in cancer. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.18311.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yamazaki N, Kiyohara Y, Uhara H, Iizuka H, Uehara J, Otsuka F, et al. Cytokine biomarkers to predict antitumor responses to nivolumab suggested in a phase 2 study for advanced melanoma. Cancer Sci. 2017;108:1022–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sanmamed MF, Perez-Gracia JL, Schalper KA, Fusco JP, Gonzalez A, Rodriguez-Ruiz ME, et al. Changes in serum interleukin-8 (IL–8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small cell lung cancer patients. Ann Oncol. 2017;28:1988–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Akiyama Y, Nonomura C, Kondou R, Miyata H, Ashizawa T, Maeda C, et al. Immunological effects of the anti-programmed death-1 antibody on human peripheral blood mononuclear cells. Int J Oncol. 2016;49:1099–107.

    Article  PubMed  CAS  Google Scholar 

  21. Akyüz N, Brandt A, Stein A, Schliffke S, Mährle T, Quidde J, et al. T–cell diversification reflects antigen selection in the blood of patients on immune checkpoint inhibition and may be exploited as liquid biopsy biomarker. Int J Cancer. 2017;140:2535–44.

    Article  PubMed  CAS  Google Scholar 

  22. Botticelli A, Zizzari I, Mazzuca F, Ascierto PA, Putignani L, Marchetti L, et al. Cross-talk between microbiota and immune fitness to steer and control response to anti PD-1/PDL-1 treatment. Oncotarget. 2017;8:8890–9.

    PubMed  Google Scholar 

  23. Xu LH, Chi XY, Li FY, Jia QT, Zha QB, He XH. Preparation and identification of human soluble sPD-L1 and its antibodies. Sheng Wu Gong Cheng Xue Bao. 2007;23:106–11.

    Article  PubMed  CAS  Google Scholar 

  24. Okuma Y, Hosomi Y, Nakahara Y, Watanabe K, Sagawa Y, Homma S. High plasma levels of soluble programmed cell death ligand 1 are prognostic for reduced survival in advanced lung cancer. Lung Cancer. 2017;104:1–6.

    Article  PubMed  Google Scholar 

  25. Rossille D, Gressier M, Damotte D, Maucort-Boulch D, Pangault C, Semana G, et al. High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma: results from a French multicenter clinical trial. Leukemia. 2014;28:2367–75.

    Article  PubMed  CAS  Google Scholar 

  26. Finkelmeier F, Canli Ö, Tal A, Pleli T, Trojan J, Schmidt M, et al. High levels of the soluble programmed death–ligand (sPD–L1) identify hepatocellular carcinoma patients with a poor prognosis. Eur J Cancer. 2016;59:152–9.

    Article  PubMed  CAS  Google Scholar 

  27. Takahashi N, Iwasa S, Sasaki Y, Shoji H, Honma Y, Takashima A, et al. Serum levels of soluble programmed cell death ligand 1 as a prognostic factor on the first–line treatment of metastatic or recurrent gastric cancer. J Cancer Res Clin Oncol. 2016;142:1727–38.

    Article  PubMed  CAS  Google Scholar 

  28. Zhou J, Mahoney KM, Giobbie-Hurder A, Zhao F, Lee S, Liao X, et al. Soluble PD–L1 as a biomarker in malignant melanoma treated with checkpoint blockade. Cancer Immunol Res. 2017;5:480–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Ruf M, Moch H, Schraml P. PD-L1 expression is regulated by hypoxia inducible factor in clear cell renal cell carcinoma. Int J Cancer. 2016;139:396–403.

    Article  PubMed  CAS  Google Scholar 

  30. Frigola X, Inman BA, Krco CJ, Liu X, Harrington SM, Bulur PA, et al. Soluble B7-H1: differences in production between dendritic cells and T cells. Immunol Lett. 2012;142(1–2):78–82.

    Article  PubMed  CAS  Google Scholar 

  31. Davies LC, Heldring N, Kadri N, Le Blanc K. Mesenchymal stromal cell secretion of programmed death–1 ligands regulates t cell mediated immunosuppression. Stem Cells. 2017;35:766–76.

    Article  PubMed  CAS  Google Scholar 

  32. Dezutter-Dambuyant C, Durand I, Alberti L, Bendriss-Vermare N, Valladeau-Guilemond J, Duc A, et al. A novel regulation of PD-1 ligands on mesenchymal stromal cells through MMP-mediated proteolytic cleavage. Oncoimmunology. 2015;5:e1091146.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, et al. Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab. Clin Cancer Res. 2016;22:5487–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Nakamura Y, Kitano S, Takahashi A, Tsutsumida A, Namikawa K, Tanese K, et al. Nivolumab for advanced melanoma: pretreatment prognostic factors and early outcome markers during therapy. Oncotarget. 2016;7:77404–15.

    PubMed  PubMed Central  Google Scholar 

  35. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351:1463–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gros A, Parkhurst MR, Tran E, Pasetto A, Robbins PF, Ilyas S, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22:433–8.

    Article  PubMed  CAS  Google Scholar 

  37. Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, et al. Proliferation of PD-1 + CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci U S A. 2017;114:4993–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355:1428–33.

    Article  PubMed  CAS  Google Scholar 

  39. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science. 2017;355:1423–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dronca RS, Liu X, Harrington SM, Chen L, Cao S, Kottschade LA, et al. T cell Bim levels reflect responses to anti-PD-1 cancer therapy. JCI Insight. 2016;1:e86014.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dulos J, Carven GJ, van Boxtel SJ, Evers S, Driessen-Engels LJ, Hobo W, et al. PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer. J Immunother. 2012;35:169–78.

    Article  PubMed  CAS  Google Scholar 

  42. Nonomura Y, Otsuka A, Nakashima C, Seidel JA, Kitoh A, Dainichi T, et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients. Oncoimmunology. 2016;5:e1248327.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Weber JS, Ramakrishnan R, Laino A, Berglund AE, Woods D. Association of changes in T regulatory cells (Treg) during nivolumab treatment with melanoma outcome. J Clin Oncol. 2017;35:(suppl; abstr 3031).

  44. Kagamu H, Yamaguchi O, Shiono A, Mouri A, Miyauchi S, Utsugi H et al. CD4+ T cells in PBMC to predict the outcome of anti–PD–1 therapy. J Clin Oncol. 2017;35:(suppl; abstr 11525).

  45. Mahnke YD, Brodie TM, Sallusto F, Roederer M, Lugli E. The who’s who of T cell differentiation: human memory T cell subsets. Eur J Immunol. 2013;43:2797–809.

    Article  PubMed  CAS  Google Scholar 

  46. Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, et al. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016;7:12150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Draghiciu O, Lubbers J, Nijman HW, Daemen T. Generation and functional characterization of MDSC–like cells. Oncoimmunology. 2015;4:e954829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Weber J, Gibney G, Kudchadkar R, Yu B, Cheng P, Martinez AJ, et al. Phase I/II study of metastatic melanoma patients treated with nivolumab who had progressed after ipilimumab. Cancer Immunol Res. 2016;4:345–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol. 2010;40:2969–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Naing A, Papadopoulos KP, Infante JR, Wong DJ, Autio KA, Ott PA, et al. Clinical activity and safety of pegylated human IL–10 (AM0010) in combination with anti–PD1. J Clin Oncol. 2016;34:3018.

    Article  Google Scholar 

  51. Wu X, Giobbie-Hurder A, Liao X, Connelly C, Connolly EM, Li J, et al. Angiopoietin–2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol Res. 2017;5:17–28.

    Article  PubMed  CAS  Google Scholar 

  52. Ott PA, Hodi FS, Buchbinder EI. Inhibition of immune checkpoints and vascular endothelial growth factor as combination therapy for metastatic melanoma: an overview of rationale, preclinical evidence, and initial clinical data. Clin Ther. 2015;37:764–82.

    Article  CAS  Google Scholar 

  53. Courau T, Nehar-Belaid D, Florez L, Levacher B, Vazquez T, Brimaud F, et al. TGF–β and VEGF cooperatively control the immunotolerant tumor environment and the efficacy of cancer immunotherapies. JCI Insight. 2016;1:e85974.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yuan J, Zhou J, Dong Z, Tandon S, Kuk D, Panageas KS, et al. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res. 2014;2:127–32.

    Article  PubMed  CAS  Google Scholar 

  55. Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res. 2014;2:632–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wallin JJ, Bendell JC, Funke R, Sznol M, Korski K, Jones S, et al. Atezolizumab in combination with bevacizumab enhances antigen–specific T–cell migration in metastatic renal cell carcinoma. Nat Commun. 2016;7:12624.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 2014;20:548–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Lipson EJ, Velculescu VE, Pritchard TS, Sausen M, Pardoll DM, Topalian SL, et al. Circulating tumor DNA analysis as a real-time method for monitoring tumor burden in melanoma patients undergoing treatment with immune checkpoint blockade. J Immunother Cancer. 2014;2:42.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Cabel L, Riva F, Servois V, Livartowski A, Daniel C, Rampanou A, et al. Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study. Ann Oncol. 2017;28:1996–2001.

    Article  PubMed  CAS  Google Scholar 

  61. Guibert N, Mazieres J, Delaunay M, Casanova A, Farella M, Keller L, et al. Monitoring of KRAS-mutated ctDNA to discriminate pseudo-progression from true progression during anti-PD-1 treatment of lung adenocarcinoma. Oncotarget. 2017;8:38056–60.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee CK, Man J, Lord S, Links M, Gebski V, Mok T, et al. Checkpoint inhibitors in metastatic EGFR–mutated non-small cell lung cancer–a meta–analysis. J Thorac Oncol. 2017;12:403–7.

    Article  PubMed  Google Scholar 

  63. Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD–1 blockade in melanoma. N Engl J Med. 2016;375:819–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201.

    Article  PubMed  CAS  Google Scholar 

  65. Nomizo T, Ozasa H, Tsuji T, Funazo T, Yasuda Y, Yoshida H, et al. Clinical impact of single nucleotide polymorphism in PD–l1 on response to nivolumab for advanced non-small-cell lung cancer patients. Sci Rep. 2017;7:45124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Aiello MM, Vigneri PG, Bruzzi P, Verderame F, Paratore S, Restuccia N, et al. Excision repair cross complementation group 1 (ERCC-1) gene polymorphisms and response to nivolumab in advanced non-small cell lung cancer (NSCLC). J Clin Oncol. 2017;35:3032.

    Article  Google Scholar 

  67. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342:967–70.

    Article  PubMed  CAS  Google Scholar 

  68. Zitvogel L, Ayyoub M, Routy B, Kroemer G. Microbiome and anticancer immunosurveillance. Cell. 2016;165:276–87.

    Article  PubMed  CAS  Google Scholar 

  69. Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, et al. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol. 2012;12:144.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science. 2013;342:971–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Rabe H, Nordström I, Andersson K, Lundell AC, Rudin A. Staphylococcus aureus convert neonatal conventional CD4(+) T cells into FOXP3(+) CD25(+) CD127(low) T cells via the PD-1/PD-L1 axis. Immunology. 2014;141:467–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 2015;350:1084–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2017. https://doi.org/10.1126/science.aan4236.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2017. https://doi.org/10.1126/science.aan3706.

    Article  PubMed  Google Scholar 

  76. Kaderbhai C, Richard C, Fumet JD, Aarnink A, Foucher P, Coudert B, et al. Antibiotic use does not appear to influence response to nivolumab. Anticancer Res. 2017;37:3195–200.

    PubMed  Google Scholar 

  77. Derosa L, Routy B, Enot D, Baciarello G, Massard C, Loriot Y, et al. Impact of antibiotics on outcome in patients with metastatic renal cell carcinoma treated with immune checkpoint inhibitors. J Clin Oncol. 2017;35:462.

    Article  Google Scholar 

  78. Chen DS, Mellman I. Oncology meets immunology: the cancer–immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  CAS  Google Scholar 

  79. Blank CU, Haanen JB, Ribas A, Schumacher TN. The “cancer immunogram”. Science. 2016;352:658–60.

    Article  PubMed  CAS  Google Scholar 

  80. Karasaki T, Nagayama K, Kuwano H, Nitadori JI, Sato M, Anraku M, et al. An immunogram for the cancer–immunity cycle: towards personalized immunotherapy of lung cancer. J Thorac Oncol. 2017;12:791–803.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grants from public, commercial, or not-for-profit funding agencies. The authors would like to thank Enago (www.enago.jp) for the English language review.

Funding

No specific funding was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Okuma.

Ethics declarations

Conflict of interest

There is no conflict of interest regarding this review article.

Research involving human participants and/or animals

Not applicable in this review article.

Informed consent

Not applicable in this review article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsuhashi, A., Okuma, Y. Perspective on immune oncology with liquid biopsy, peripheral blood mononuclear cells, and microbiome with non-invasive biomarkers in cancer patients. Clin Transl Oncol 20, 966–974 (2018). https://doi.org/10.1007/s12094-017-1827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-017-1827-7

Keywords

Navigation