Skip to main content

Advertisement

Log in

Animal models of breast cancer for the study of pathogenesis and therapeutic insights

  • Educational Series
  • Current Technology in Cancer Research and Treatment
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Activation of oncogenes and inactivation of tumour suppressor genes are common events during breast cancer initiation and progression and often determine treatment responsiveness. Indeed, these events need to be recreated in in vitro systems and in mouse cancer models in order to unravel the molecular mechanisms involved in breast cancer initiation and metastasis and assess their possible impact on responses to anticancer drugs. Opticalbased imaging models are used to investigate and to follow important tumour progression processes. Moreover, the development of novel anticancer strategies requires more sensitive and less invasive methods to detect and monitor in vivo drug responses in breast cancer models. This review highlights some of the current strategies for modelling breast cancer in vitro and in the mouse, in order to answer biological or translational questions about human breast malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harris JR, Lippman ME, Veronesi U, Willett W (1992) Breast cancer (1). N Engl J Med 327:319–328

    CAS  PubMed  Google Scholar 

  2. Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    Article  CAS  PubMed  Google Scholar 

  3. Albertson DG (2003) Profiling breast cancer by array CGH. Breast Cancer Res Treat 78:289–298

    Article  CAS  PubMed  Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  5. Hyman E, Kauraniemi P, Hautaniemi S et al (2002) Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Res 62:6240–6245

    CAS  PubMed  Google Scholar 

  6. Kallioniemi A, Kallioniemi OP, Piper J et al (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A 91:2156–2160

    Article  CAS  PubMed  Google Scholar 

  7. Pollack JR, Sorlie T, Perou CM et al (2002) Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proc Natl Acad Sci U S A 99:12963–12968

    Article  CAS  PubMed  Google Scholar 

  8. Roylance R, Gorman P, Harris W et al (1999) Comparative genomic hybridization of breast tumors stratified by histological grade reveals new insights into the biological progression of breast cancer. Cancer Res 59:1433–1436

    CAS  PubMed  Google Scholar 

  9. Tirkkonen M, Tanner M, Karhu R et al (1998) Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer 21:177–184

    Article  CAS  PubMed  Google Scholar 

  10. Neve RM, Chin K, Fridlyand J et al (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10:515–527

    Article  CAS  PubMed  Google Scholar 

  11. Fridlyand J, Snijders AM, Ylstra B et al (2006) Breast tumor copy number aberration phenotypes and genomic instability. BMC Cancer 6:96

    Article  PubMed  CAS  Google Scholar 

  12. Clarke R (1996) Animal models of breast cancer: their diversity and role in biomedical research. Breast Cancer Res Treat 39:1–6

    Article  CAS  PubMed  Google Scholar 

  13. Cardiff RD, Anver MR, Gusterson BA et al (2000) The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 19:968–988

    Article  CAS  PubMed  Google Scholar 

  14. Balmain A (2002) Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models. Cell 108:145–152

    Article  CAS  PubMed  Google Scholar 

  15. Jamerson MH, Johnson MD, Dickson RB (2004) Of mice and Myc: c-Myc and mammary tum origenesis. J Mammary Gland Biol Neoplasia 9:27–37

    Article  PubMed  Google Scholar 

  16. Clarke R, Dickson RB (1997) Animal models of tumor onset, growth, and metastasis. Encyclopedia of Cancer, Vol 1, Springer, pp 10–21 (and Vol. 39, pp 1–6, 1996)

    CAS  Google Scholar 

  17. Clarke R (1996) Human breast cancer cell line xenografts as models of breast cancer: the immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat 39:69–86

    Article  CAS  PubMed  Google Scholar 

  18. Neve RM, Parmar H, Amend C et al (2006) Identification of an epithelial-specific enhancer regulating ESX expression. Gene 367:118–125

    Article  CAS  PubMed  Google Scholar 

  19. Sorlie T (2004) Molecular portraits of breast cancer: tumour subtypes as distinct disease entities. Eur J Cancer 40:2667–2675

    Article  CAS  PubMed  Google Scholar 

  20. Nelander S, Wang W, Nilsson B et al (2008) Models from experiments: combinatorial drug perturbations of cancer cells. Mol Syst Biol 4:216

    Article  PubMed  Google Scholar 

  21. Dairkee SH, Deng G, Stampfer MR et al (1995) Selective cell culture of primary breast carcinoma. Cancer Res 55:2516–2519

    CAS  PubMed  Google Scholar 

  22. Xu R, Boudreau A, Bissell MJ (2009) Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev 28:167–176

    Article  PubMed  Google Scholar 

  23. Kenny PA, Lee GY, Myers CA et al (2007) The morphologies of breast cancer cell lines in threedimensional assays correlate with their profiles of gene expression. Mol Oncol 1:84–96

    Article  CAS  PubMed  Google Scholar 

  24. Arteaga CL, Moses HL (1996) TGF-beta in mammary development and neoplasia. J Mammary Gland Biol Neoplasia 1:327–329

    Article  CAS  PubMed  Google Scholar 

  25. Brunner N, Spang-Thomsen M, Cullen K (1996) The T61 human breast cancer xenograft: an experimental model of estrogen therapy of breast cancer. Breast Cancer Res Treat 39:87–92

    Article  CAS  PubMed  Google Scholar 

  26. Oakley CS, Welsch MA, Zhai YF et al (1993) Comparative abilities of athymic nude mice and severe combined immune deficient (SCID) mice to accept transplants of induced rat mammary carcinomas: enhanced transplantation efficiency of those rat mammary carcinomas that have elevated expression of neu oncogene. Int J Cancer 53:1002–1007

    CAS  PubMed  Google Scholar 

  27. Hendrickson EA (1993) The SCID mouse: relevance as an animal model system for studying human disease. Am J Pathol 143:1511–1522

    CAS  PubMed  Google Scholar 

  28. Monsky WL, Mouta Carreira C, Tsuzuki Y et al (2002) Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res 8:1008–1013

    CAS  PubMed  Google Scholar 

  29. Niclou SP, Danzeisen C, Eikesdal HP et al (2008) A novel eGFP-expressing immunodeficient mouse model to study tumor-host interactions. FASEB J 22:3120–3128

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Z, Li H, Liu Q et al (2004) Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers. Biosens Bioelectron 20:643–650

    Article  PubMed  CAS  Google Scholar 

  31. Dawson PJ, Wolman SR, Tait L et al (1996) MCF10AT: a model for the evolution of cancer from proliferative breast disease. Am J Pathol 148:313–319

    CAS  PubMed  Google Scholar 

  32. Farnie G, Clarke RB (2007) Mammary stem cells and breast cancer: role of Notch signalling. Stem Cell Rev 3:169–175

    Article  CAS  PubMed  Google Scholar 

  33. van Lohuizen M, Berns A (1990) Tumorigenesis by slow-transforming retroviruses: an update. Biochim Biophys Acta 1032:213–235

    PubMed  Google Scholar 

  34. Wei WZ, Gill RF, Wang H (1993) Mouse mammary tumor virus associated antigens and superantigens: immuno-molecular correlates of neoplastic progression. Semin Cancer Biol 4:205–213

    CAS  PubMed  Google Scholar 

  35. Callahan RS, Smith GH (2000) MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellular pathways. Oncogene 19:992–1001

    Article  CAS  PubMed  Google Scholar 

  36. Golovkina TV, Dudley JP, Jaffe AB, Ross SR (1995) Mouse mammary tumor viruses with functional superantigen genes are selected during in vivo infection. Proc Natl Acad Sci U S A 92:4828–4832

    Article  CAS  PubMed  Google Scholar 

  37. Nusse R (1991) Insertional mutagenesis in mouse mammary tumorigenesis. Curr Top Microbiol Immunol 171:43–65

    CAS  PubMed  Google Scholar 

  38. Haslam SZ, Wirth JJ, Counterman LJ, Fluck MM (1992) Characterization of the mammary hyperplasia, dysplasia and neoplasia induced in athymic female adult mice by polyomavirus. Oncogene 7:1295–1303

    CAS  PubMed  Google Scholar 

  39. Dankort DL, Muller WJ (2000) Signal transduction in mammary tumorigenesis: a transgenic perspective. Oncogene 19:1038–1044

    Article  CAS  PubMed  Google Scholar 

  40. Bearss DJ, Subler MA, Hundley JE et al (2000) Genetic determinants of response to chemotherapy in transgenic mouse mammary and salivary tumors. Oncogene 19:1114–1122

    Article  CAS  PubMed  Google Scholar 

  41. Donehower LA (1996) The p53-deficient mouse: a model for basic and applied cancer studies. Semin Cancer Biol 7:269–278

    Article  CAS  PubMed  Google Scholar 

  42. Murphy KL, Rosen JM (2000) Mutant p53 and genomic instability in a transgenic mouse model of breast cancer. Oncogene 19:1045–1051

    Article  CAS  PubMed  Google Scholar 

  43. Jerry DJ, Kittrell FS, Kuperwasser C et al (2000) A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development. Oncogene 19:1052–1058

    Article  CAS  PubMed  Google Scholar 

  44. Li M, Lewis B, Capuco AV et al (2000) WAP-TAg transgenic mice and the study of dysregulated cell survival, proliferation, and mutation during breast carcinogenesis. Oncogene 19:1010–1019

    Article  CAS  PubMed  Google Scholar 

  45. Chatterjee G, Rosner A, Han Y et al (2002) Acceleration of mouse mammary tumor virus-induced murine mammary tumorigenesis by a p53 172H transgene: influence of FVB background on tumor latency and identification of novel sites of proviral insertion. Am J Pathol 161:2241–2253

    CAS  PubMed  Google Scholar 

  46. Li Y, Hively WP, Varmus HE (2000) Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene 19:1002–1009

    Article  CAS  PubMed  Google Scholar 

  47. Bocchinfuso WP, Hively WP, Couse JF et al (1999) A mouse mammary tumor virus-Wnt-1 transgene induces mammary gland hyperplasia and tumorigenesis in mice lacking estrogen receptor-alpha. Cancer Res 59:1869–1876

    CAS  PubMed  Google Scholar 

  48. Li Y, Welm B, Podsypanina K et al (2003) Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A 100:15853–15858

    Article  CAS  PubMed  Google Scholar 

  49. Schulze-Garg C, Lohler J, Gocht A, Deppert W (2000) A transgenic mouse model for the ductal carcinoma in situ (DCIS) of the mammary gland. Oncogene 19:1028–1037

    Article  CAS  PubMed  Google Scholar 

  50. Davies BR, Platt-Higgins AM, Schmidt G, Rudland PS (1999) Development of hyperplasias, preneoplasias, and mammary tumors in MMTV-cerbB-2 and MMTV-TGFalpha transgenic rats. Am J Pathol 155:303–314

    CAS  PubMed  Google Scholar 

  51. Moody SE, Sarkisian CJ, Hahn KT et al (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2:451–461

    Article  CAS  PubMed  Google Scholar 

  52. Wijnhoven SW, Zwart E, Speksnijder EN et al (2005) Mice expressing a mammary gland-specific R270H mutation in the p53 tumor suppressor gene mimic human breast cancer development. Cancer Res 65:8166–8173

    Article  CAS  PubMed  Google Scholar 

  53. Karantza-Wadsworth V, White E (2008) A mouse mammary epithelial cell model to identify molecular mechanisms regulating breast cancer progression. Methods Enzymol 446:61–76

    Article  CAS  PubMed  Google Scholar 

  54. Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572

    Article  CAS  PubMed  Google Scholar 

  55. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    Article  CAS  PubMed  Google Scholar 

  56. Palmieri D, Chambers AF, Felding-Habermann B et al (2007) The biology of metastasis to a sanctuary site. Clin Cancer Res 13:1656–1662

    Article  CAS  PubMed  Google Scholar 

  57. Weil, RJ, Palmieri DC, Bronder JL et al (2005) Breast cancer metastasis to the central nervous system. Am J Pathol 167:913–920

    CAS  PubMed  Google Scholar 

  58. Kluger HM, Chelouche Lev D, Kluger Y et al (2005) Using a xenograft model of human breast cancer metastasis to find genes associated with clinically aggressive disease. Cancer Res 65:5578–5587

    Article  CAS  PubMed  Google Scholar 

  59. Price JE (1996) Metastasis from human breast cancer cell lines. Breast Cancer Res Treat 39:93–102

    Article  CAS  PubMed  Google Scholar 

  60. Wong CW, Song C, Grimes MM et al (2002) Intravascular location of breast cancer cells after spontaneous metastasis to the lung. Am J Pathol 161:749–753

    PubMed  Google Scholar 

  61. Tarin D (2008) Comparisons of metastases in different organs: biological and clinical implications. Clin Cancer Res 14:1923–1925

    Article  PubMed  Google Scholar 

  62. Lu J, Steeg PS, Price JE et al (2009) Breast cancer metastasis: challenges and opportunities. Cancer Res 69:4951–4953

    Article  CAS  PubMed  Google Scholar 

  63. Yoneda T, Williams PJ, Hiraga T et al (2001) A bone-seeking clone exhibits different biological properties from the MDA-MB-231 parental human breast cancer cells and a brain-seeking clone in vivo and in vitro. J Bone Miner Res 16:1486–1495

    Article  CAS  PubMed  Google Scholar 

  64. Garcia T, Jackson A, Bachelier R et al (2008) A convenient clinically relevant model of human breast cancer bone metastasis. Clin Exp Metastasis 25:33–42

    Article  CAS  PubMed  Google Scholar 

  65. Song H, Shahverdi K, Huso DL et al (2008) An immunotolerant HER-2/neu transgenic mouse model of metastatic breast cancer. Clin Cancer Res 14:6116–6124

    Article  CAS  PubMed  Google Scholar 

  66. Ambartsumian NS, Grigorian MS, Larsen IF et al (1996) Metastasis of mammary carcinomas in GRS/A hybrid mice transgenic for the mts1 gene. Oncogene 13:1621–1630

    CAS  PubMed  Google Scholar 

  67. Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108:135–144

    Article  PubMed  Google Scholar 

  68. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM (2002) MRI of the tumor microenvironment. J Magn Reson Imaging 16:430–450

    Article  PubMed  Google Scholar 

  69. Heyn C, Ronald JA, Ramadan SS et al (2006) In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn Reson Med 56:1001–1010

    Article  PubMed  Google Scholar 

  70. Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205:194–205

    Article  CAS  PubMed  Google Scholar 

  71. Leenders WK, Küsters B, Pikkemaat J et al (2003) Vascular endothelial growth factor-A determines detectability of experimental melanoma brain metastasis in GD-DTPA-enhanced MRI. Int J Cancer 105:437–443

    Article  CAS  PubMed  Google Scholar 

  72. Li LZ, Zhou R, Xu HN et al (2009) Quantitative magnetic resonance and optical imaging biomarkers of melanoma metastatic potential. Proc Natl Acad Sci U S A 106:6608–6613

    Article  CAS  PubMed  Google Scholar 

  73. Kobayashi H, Kawamoto S, Sakai Y et al (2004) Lymphatic drainage imaging of breast cancer in mice by micro-magnetic resonance lymphangiography using a nano-size paramagnetic contrast agent. J Natl Cancer Inst 96:703–708

    Article  CAS  PubMed  Google Scholar 

  74. Paris S, Chauzy C, Martin-Vandelet N et al (1999) A model of spontaneous lung metastases visualised in fresh host tissue by green fluorescent protein expression. Clin Exp Metastasis 17:817–822

    Article  CAS  PubMed  Google Scholar 

  75. Paris S, Sesboue R (2004) Metastasis models: the green fluorescent revolution? Carcinogenesis 25:2285–2292

    Article  CAS  PubMed  Google Scholar 

  76. Henriquez NV, van Overveld PG, Que I et al (2007) Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 24:699–705

    Article  PubMed  Google Scholar 

  77. Khanna C, Hunter K (2005) Modeling metastasis in vivo. Carcinogenesis 26:513–523

    Article  CAS  PubMed  Google Scholar 

  78. Kaijzel EL, van der Pluijm G, Lowik CW (2007) Whole-body optical imaging in animal models to assess cancer development and progression. Clin Cancer Res 13:3490–3497

    Article  PubMed  Google Scholar 

  79. Kedrin D, Gligorijevic B, Wyckoff J et al (2008) Intravital imaging of metastatic behavior through a mammary imaging window. Nat Methods 5:1019–1021

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angels Sierra.

Additional information

Supported by an unrestricted educational grant from Merck Serono

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sierra, A. Animal models of breast cancer for the study of pathogenesis and therapeutic insights. Clin Transl Oncol 11, 721–726 (2009). https://doi.org/10.1007/s12094-009-0434-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-009-0434-7

Keywords

Navigation