Skip to main content

Advertisement

Log in

Modulation of Human Gut Microbiota In Vitro by Inulin-Type Fructan from Codonopsis pilosula Roots

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Inulin-type fructan (ITF) defined as a polydisperse carbohydrate consisting mainly of β-(2–1) fructosyl-fructose links exerts potential prebiotics properties by selectively stimulating the growth of Bifidobacterium and Lactobacillus. This study reported the modulation of human gut microbiota in vitro by ITF from Codonopsis pilosula roots using 16S ribosomal RNA gene sequencing. The microbiota community structure analysis at genus levels showed that 50 mg/mL ITF significantly stimulated the growth of Prevotella and Faecalibacterium. LEfSe analysis showed that ITF at 25 and 50 mg/mL primarily increased the relative abundance of genera Parabacteroides and Alistipes (LDA Score > 4), and genera Prevotella and Faecalibacterium (LDA Score > 4) as well as Acidaminococcus, Megasphaera, Bifidobacterium and Megamonas (LDA Score > 3.5), respectively. Meanwhile, ITF at 25 and 50 mg/mL exhibited the effects of lowering pH values of samples after 24 h fermentation (p < 0.05). The results indicated that ITF likely has potential in stimulating the growth of Prevotella and Faecalibacterium as well as Bifidobacterium of human gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang S, Zhang Q, An L, Zhang J, Li Z, Zhang J, Li Y, Tuerhong M, Ohizumi Y, Jin J, Xu J, Guo YQ (2020) A fructan from Anemarrhena asphodeloides Bunge showing neuroprotective and immunoregulatory effects. Carbohyd Polym 229:115477

    Article  CAS  Google Scholar 

  2. Vandeputte D, Falony G, Vieira-Silva S, Wang J, Sailer M, Theis S (2017) Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut 66:1968–1974

    Article  PubMed  CAS  Google Scholar 

  3. Kelly G (2009) Inulin-type prebiotics–A review part 2. Altern Med Rev 14:36–55

    PubMed  Google Scholar 

  4. Apolinário AC, de Lima Damasceno BP, de Macêdo Beltrão NE, Pessoa A, Converti A, da Silva JA (2014) Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohyd Polym 101:368–378

    Article  Google Scholar 

  5. Mensink MA, Frijlink HW, Maarschalk KV, Hinrichs WLJ (2015) Inulin, a flexible oligosaccharide. II: review of its pharmaceutical applications. Carbohyd Polym 134:418–428

    Article  CAS  Google Scholar 

  6. Zou YF, Zhang YY, Zhu ZK, Fu YP, Paulsen BS, Huang C, Feng B, Li LX, Chen XF, Jia RY, Song X, He CL, Yin LZ, Lv C, Yin ZQ (2021) Characterization of inulin-type fructans from two species of Radix Codonopsis and their oxidative defense activation and prebiotic activities. J Sci Food Agric 101:2491–2499

    Article  PubMed  CAS  Google Scholar 

  7. Fu YP, Li LX, Zhang BZ, Paulsen BS, Yin ZQ, Huang C, Feng B, Chen XF, Jia RR, Song X, Ni XQ, Jing B, Wu FM, Zou YF (2018) Characterization and prebiotic activity in vitro of inulin-type fructan from Codonopsis pilosula roots. Carbohyd Polym 193:212–220

    Article  CAS  Google Scholar 

  8. Tawfick MM, Xie HL, Zhao C, Shao P, Farag MA (2022) Inulin fructans in diet: role in gut homeostasis, immunity, health outcomes and potential therapeutics. Int J Biol Macromol 208:948–961

    Article  PubMed  CAS  Google Scholar 

  9. Gao SM, Liu JS, Wang M, Cao TT, Qi YD, Zheng BG, Sun XB, Liu HT, Xiao PG (2018) Traditional uses, phytochemistry, pharmacology and toxicology of Codonopsis: a review. J Ethnopharmacol 219:50–70

    Article  PubMed  CAS  Google Scholar 

  10. Gong ZG, Zhang SY, Gu BC, Cao JS, Mao W, Yao Y, Zhao JM, Ren PP, Zhang K, Liu B (2022) Codonopsis pilosula polysaccharides attenuate Escherichia coli-induced acute lung injury in mice. Food Funct 13:7999–8011

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Q, Xia YY, Luo HB, Huang S, Wang YJ, Shentu YP, Razak Mahaman YA, Huang F, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Wang XC (2018) Codonopsis pilosula polysaccharide attenuates Tau hyperphosphorylation and cognitive impairments in hTau infected mice. Front Mol Neurosci 11:437

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wan L, Zhang B, Luo HB, Xu ZD, Huang S, Yang FM, Liu Y, Razak Mahaman YA, Ke D, Wang Q, Liu R, Wang JZ, Shu XJ, Wang XC (2020) Codonopsis pilosula polysaccharide attenuates Aβ toxicity and cognitive defects in APP/PS1 mice. Aging 12:13422–13436

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Meng XQ, Kuang HX, Wang QH, Zhang H, Wang D, Kang TG (2023) A polysaccharide from Codonopsis pilosula roots attenuated carbon tetrachloride-induced liver fibrosis via modulation of TLR4/NF-κ and TGF-β1/Smad3 signaling pathway. Int Immunopharmacol 119:110180

    Article  PubMed  CAS  Google Scholar 

  14. Xie Q, Sun YT, Cao LL, Chen LN, Chen J, Cheng XM, Wang CH (2020) Antifatigue and antihypoxia activities of oligosaccharides and polysaccharides from Codonopsis pilosula in mice. Food Funct 11:6352–6362

    Article  PubMed  CAS  Google Scholar 

  15. Ye G, Li C, Huang CG, Li ZX, Wang XL, Chen YZ (2005) Chemical Structure of fructosan from Codonopsis pilosula. China J Chin Materia Med 30:1338–1340

    CAS  Google Scholar 

  16. Zou YF, Li CY, Fu YP, Feng X, Peng X, Feng B, Li LX, Jia RY, Huang C, Song X, Lv C, Ye G, Zhao L, Li YP, Zhao XH, Yin LZ, Yin ZQ (2022) Restorative effects of inulin from Codonopsis pilosula on intestinal mucosa immunity, anti-inflammatory activities and gut microbiota of immunosuppressed mice. Front Pharmacol 13:786141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Meng Y, Xu YJ, Chang C, Qiu ZP, Hu JJ, Wu Y, Zhang BH, Zheng GH (2020) Extraction, characterization and anti-inflammatory activities of an inulin-type fructan from Codonopsis pilosula. Int J Biol Macromol 163:1677–1686

    Article  PubMed  CAS  Google Scholar 

  18. Li JK, Wang T, Zhu ZC, Yang FR, Cao LY, Gao JP (2017) Structure features and anti-gastric ulcer effects of inulin-type fructan ITF from the roots of Codonopsis pilosula (Franch) Nannf. Molecules 22:2258

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou WT, Yan YM, Mi J, Zhang HC, Lu L, Luo Q, Li XY, Zeng XX, Cao YL (2018) Stimulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from Bee collected pollen of Chinese wolfberry. J Agric Food Chem 66(4):898–907

    Article  PubMed  CAS  Google Scholar 

  20. French AD (1989) Chemical and physical properties of fructans. J Plant Physiol 134:125–136

    Article  CAS  Google Scholar 

  21. Wu DT, Fu Y, Guo H, Yuan Q, Nie XR, Wang SP, Gan RY (2021) In vitro simulated digestion and fecal fermentation of polysaccharides from loquat leaves: dynamic changes in physicochemical properties and impacts on human gut microbiota. Int J Biol Macromol 168:733–742

    Article  PubMed  CAS  Google Scholar 

  22. Qi M, Cao ZP, Shang P, Zhang H, Hussain R, Mehmood K, Chang ZY, Wu QX, Dong HL (2021) Comparative analysis of fecal microbiota composition diversity in Tibetan piglets suffering from diarrheagenic Escherichia coli (DEC). Microb Pathog 158:105106

    Article  PubMed  CAS  Google Scholar 

  23. Lv LX, Mu DG, Du YL, Yan R, Jiang HY (2021) Mechanism of the immunomodulatory effect of the combination of live Bifidobacterium, lactobacillus, enterococcus, and bacillus on immunocompromised rats. Front Immunol 12:694344

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wexler AG, Goodman AL (2017) An insider’s perspective: Bacteroides as a window into the microbiome. Nat Microbiol 2:17026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Gálvez EJC, Iljazovic A, Amend L, Lesker TR, Renault T, Thiemann S, Hao LX, Roy U, Gronow A, Charpentier E, Strowig T (2020) Distinct polysaccharide utilization determines interspecies competition between intestinal Prevotella spp. Cell Host Microbe 28:1–15

    Article  Google Scholar 

  26. Huang FR, Liu XJ, Xu S, Hu ST, Wang SS, Shi DB, Wang KC, Wang ZX, Liu QQ, Li S, Zhao SY, Jin KK, Wang C, Chen L, Wang FY (2022) Prevotella histicola mitigated estrogen deficiency-induced depression via gut miacrobiota-dependent modulation of inflammation in ovariectomized mice. Front Nutrition 8:805465

    Article  Google Scholar 

  27. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Björck I, Bäckhed F (2015) Dietary-fiber-induced improvement in glucose metabolism is associated with increased abundance of Prevotella. Cell Metab 22:971–982

    Article  PubMed  CAS  Google Scholar 

  28. Filippis FD, Pasolli E, Ercolini D (2020) Newly explored Faecalibacterium diversity is connected to age, lifestyle, geography, and disease. Curr Biol 30:4932–4943

    Article  PubMed  Google Scholar 

  29. Parsae M, Sarafraz N, Moaddab SY, Leylabadlo HE (2021) The important of Faecalibacterium prausnitzii in human health and disease. New Microbes and New Infections 43:100928

    Article  Google Scholar 

  30. Leylabadlo HE, Ghotaslou R, Feizabadi MM, Farajinia S, Moaddab SY, Ganbarov K, Khodadadi E, Tanomand A, Sheykhsaran E, Yousefi B, Kafil HS (2020) The critical role of Faecalibacterium prausnitzii in human health: an overview. Microb Pathog 149:104344

    Article  PubMed  CAS  Google Scholar 

  31. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A (2020) The genus Alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol 11:906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Cominelli MSP, F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A, (2021) Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes 13:e1922241

    Article  Google Scholar 

  33. Yu CX, Ahmadi S, Shen SH, Wu DM, Xiao H, Ding T, Liu DH, Ye XQ, Chen SG (2022) Structure and fermentation characteristics of five polysaccharides sequentially extracted from sugar beet pulp by different methods. Food Hydrocolloids 126:107462

    Article  CAS  Google Scholar 

  34. Dalile B, Van Oudenhove L, Vervliet B, Verbeke K (2019) The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol 16:461–478

    Article  PubMed  Google Scholar 

  35. Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M (2019) Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol 66:1–12

    PubMed  CAS  Google Scholar 

  36. Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, Coutinho PM, Henrissat B, Nelson KE (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 60:721–729

    Article  ADS  PubMed  Google Scholar 

  37. Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7:189–200

    Article  PubMed  PubMed Central  Google Scholar 

  38. Louis P, Young P, Holtrop G, Flint HJ (2010) Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA: acetate CoA-transferase gene. Environ Microbiol 12:304–314

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (No. U22A20375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiankuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cao, L., Ji, J. et al. Modulation of Human Gut Microbiota In Vitro by Inulin-Type Fructan from Codonopsis pilosula Roots. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-023-01185-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-023-01185-3

Keywords

Navigation