Skip to main content

Advertisement

Log in

Biochemical Composition, Antioxidant Capacity and Protective Effects of Three Fermented Plants Beverages on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Mice

  • ORIGINAL RESEARCH ARTICLE
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Functional beverages play an essential role in our modern life and contribute to nutritional well-being. Current efforts to understand and develop functional beverages to promote health and wellness have been enhanced. The present study aimed to investigate the production of three fermented plants beverages (FPBs) from aromatic and medicinal plants and to evaluate the fermented product in terms of physio-biochemical composition, the aromatic compounds, antioxidant activity, and in vivo protective effects on hepatotoxicity and nephrotoxicity induced by carbon tetrachloride (CCl4). The results showed that the fermented beverage NurtBio B had the highest levels of polyphenols, flavonoids, and tannins; 242.3 ± 12.4 µg GAE/mL, 106.4 ± 7.3 µg RE/mL and 94.2 ± 5.1 µg CE/mL, respectively. The aromatic profiles of the fermented beverages showed thirty-one interesting volatile compounds detected by GC–MS headspace analyses such as benzaldehyde, Eucalyptol, Fenchone, 3-Octadecyne, Estragole, and Benzene propanoic acid 1-methylethyl ester. In addition, the fermentation process was significantly improved, indicating its great potential as a functional food with both strong antioxidant activity and good flavor. In vivo administration of CCl4 in mice induced hepatotoxicity and nephrotoxicity by a significant rise in the levels of serum liver and kidney biomarkers. The protective effects of the FPBs showed that they significantly restored the majority of these biological parameters to normal levels, along with increase antioxidant enzyme activities, as well as an improvement of histopathological changes, suggesting their protective effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and all related data and information are available from the corresponding author on reasonable request.

References

  1. Petrova P, Petrov K (2020) Lactic acid fermentation of cereals and pseudocereals: ancient nutritional biotechnologies with modern applications. Nutrients 12:1118. https://doi.org/10.3390/nu12041118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang Q, Fu H, Zhang G et al (2023) Efficient chain elongation synthesis of n-caproate from shunting fermentation of food waste. Bioresour Technol 370:128569. https://doi.org/10.1016/j.biortech.2022.128569

    Article  CAS  PubMed  Google Scholar 

  3. Tamang JP, Cotter PD, Endo A et al (2020) Fermented foods in a global age: east meets West. Compr Rev Food Sci Food Saf 19:184–217. https://doi.org/10.1111/1541-4337.12520

    Article  PubMed  Google Scholar 

  4. Barba FJ, Brianceau S, Turk M et al (2015) Effect of alternative physical treatments (ultrasounds, pulsed electric fields, and high-voltage electrical discharges) on selective recovery of bio-compounds from fermented grape pomace. Food Bioprocess Technol 8:1139–1148. https://doi.org/10.1007/s11947-015-1482-3

    Article  CAS  Google Scholar 

  5. Szopa A, Klimek-Szczykutowicz M, Kokotkiewicz A et al (2019) Phenolic acid and flavonoid production in agar, agitated and bioreactor-grown microshoot cultures of schisandra chinensis cv. Sadova No. 1—a valuable medicinal plant. J Biotechnol 305:61–70. https://doi.org/10.1016/j.jbiotec.2019.08.021

    Article  CAS  PubMed  Google Scholar 

  6. Das D, Sarkar S, Borsingh Wann S et al (2022) Current perspectives on the anti-inflammatory potential of fermented soy foods. Food Res Int 152:110922. https://doi.org/10.1016/j.foodres.2021.110922

    Article  CAS  PubMed  Google Scholar 

  7. Fentie EG, Jeong M, Emire SA et al (2022) Physicochemical properties, antioxidant activities and microbial communities of Ethiopian honey wine. Tej Food Res Int 152:110765. https://doi.org/10.1016/j.foodres.2021.110765

    Article  CAS  PubMed  Google Scholar 

  8. Rupprecht L, Rojas EM, Glass S, Garbe LA (2017) Fructans juice as fermentable raw material to improve a beverage with prebiotic and probiotic properties. J Biotechnol 256:S28. https://doi.org/10.1016/j.jbiotec.2017.06.646

    Article  Google Scholar 

  9. Gadhoumi H, Gullo M, De Vero L et al (2021) Design of a new fermented beverage from medicinal plants and organic sugarcane molasses via lactic fermentation. Appl Sci 11:6089. https://doi.org/10.3390/app11136089

    Article  CAS  Google Scholar 

  10. Fessard A, Kapoor A, Patche J et al (2017) Lactic fermentation as an efficient tool to enhance the antioxidant activity of tropical fruit juices and teas. Microorganisms 5:23. https://doi.org/10.3390/microorganisms5020023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cuadrado C, Hajos G, Burbano C et al (2002) Effect of natural fermentation on the lectin of lentils measured by immunological methods. Food Agric Immunol 14:41–49. https://doi.org/10.1080/09540100220137655

    Article  CAS  Google Scholar 

  12. Nkhata SG, Ayua E, Kamau EH, Shingiro J-B (2018) Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci Nutr 6:2446–2458. https://doi.org/10.1002/fsn3.846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jang CH, Oh J, Lim JS et al (2021) Fermented soy products: beneficial potential in neurodegenerative diseases. Foods 10:636. https://doi.org/10.3390/foods10030636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu Y-Y, Thakur K, Feng J-Y et al (2020) Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: insights into improved nutritional and functional attributes. Appl Microbiol Biotechnol 104:5759–5772. https://doi.org/10.1007/s00253-020-10649-1

    Article  CAS  PubMed  Google Scholar 

  15. An X, Wang Z, Li J et al (2022) Analysis of flavor-related compounds in fermented persimmon beverages stored at different temperatures. LWT 163:113524. https://doi.org/10.1016/j.lwt.2022.113524

    Article  CAS  Google Scholar 

  16. Zheng X, Wu F, Hong Y et al (2018) Developments in taste-masking techniques for traditional chinese medicines. Pharmaceutics 10:157. https://doi.org/10.3390/pharmaceutics10030157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu W, Jiang B, Zhong F et al (2021) Effect of microbial fermentation on the fishy-odor compounds in kelp (laminaria japonica). Foods 10:2532. https://doi.org/10.3390/foods10112532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yan X-T, Zhang Z, Wang Y et al (2023) Antioxidant capacity, flavor and physicochemical properties of FH06 functional beverage fermented by lactic acid bacteria: a promising method to improve antioxidant activity and flavor of plant functional beverage. Appl Biol Chem 66:7. https://doi.org/10.1186/s13765-022-00762-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gulcin İ (2020) Antioxidants and antioxidant methods: an updated overview. Arch Toxicol 94:651–715. https://doi.org/10.1007/s00204-020-02689-3

    Article  CAS  PubMed  Google Scholar 

  20. Daud S, Abid O-R, Sardar A et al (2022) Design, synthesis, in vitro evaluation, and docking studies on ibuprofen derived 1,3,4-oxadiazole derivatives as dual α-glucosidase and urease inhibitors. Med Chem Res. https://doi.org/10.1007/s00044-021-02814-6

    Article  Google Scholar 

  21. Tonolo F, Moretto L, Folda A et al (2019) Antioxidant properties of fermented soy during shelf life. Plant Foods Hum Nutr 74:287–292. https://doi.org/10.1007/s11130-019-00738-6

    Article  CAS  PubMed  Google Scholar 

  22. AL Zahrani AJ, Shori AB (2023) Viability of probiotics and antioxidant activity of soy and almond milk fermented with selected strains of probiotic Lactobacillus spp. LWT 176:114531. https://doi.org/10.1016/j.lwt.2023.114531

    Article  CAS  Google Scholar 

  23. Voss GB, Monteiro MJP, Jauregi P et al (2021) Functional characterisation and sensory evaluation of a novel synbiotic okara beverage. Food Chem 340:127793. https://doi.org/10.1016/j.foodchem.2020.127793

    Article  CAS  PubMed  Google Scholar 

  24. Bonciani T, De Vero L, Giannuzzi E et al (2018) Qualitative and quantitative screening of the β -glucosidase activity in Saccharomyces cerevisiae and Saccharomyces uvarum strains isolated from refrigerated must. Lett Appl Microbiol 67:72–78. https://doi.org/10.1111/lam.12891

    Article  CAS  PubMed  Google Scholar 

  25. Rul F, Béra-Maillet C, Champomier-Vergès MC et al (2022) Underlying evidence for the health benefits of fermented foods in humans. Food Funct 13:4804–4824. https://doi.org/10.1039/D1FO03989J

    Article  CAS  PubMed  Google Scholar 

  26. Horlacher N, Oey I, Agyei D (2023) Learning from tradition: health-promoting potential of traditional lactic acid fermentation to drive innovation in fermented plant-based dairy alternatives. Fermentation 9:452. https://doi.org/10.3390/fermentation9050452

    Article  CAS  Google Scholar 

  27. Koriem KMM, Arbid MS, Asaad GF (2013) Chelidonium majus leaves methanol extract and its chelidonine alkaloid ingredient reduce cadmium-induced nephrotoxicity in rats. J Nat Med 67:159–167. https://doi.org/10.1007/s11418-012-0667-6

    Article  CAS  PubMed  Google Scholar 

  28. Yao H-T, Luo M-N, Li C-C (2015) Chitosan oligosaccharides reduce acetaminophen-induced hepatotoxicity by suppressing CYP-mediated bioactivation. J Funct Foods 12:262–270. https://doi.org/10.1016/j.jff.2014.11.014

    Article  CAS  Google Scholar 

  29. Wannes WA, Tounsi MS (2022) Tunisian nephroprotective plants: a review. J Explor Res Pharmacol. https://doi.org/10.14218/JERP.2022.00031

    Article  Google Scholar 

  30. Aruoma OI, Deiana M, Rosa A et al (2002) Assessment of the ability of the antioxidant cocktail-derived from fermentation of plants with effective microorganisms (EM-X) to modulate oxidative damage in the kidney and liver of rats in vivo: studies upon the profile of poly- and mono-unsaturated fatty acids. Toxicol Lett 135:209–217. https://doi.org/10.1016/S0378-4274(02)00261-8

    Article  CAS  PubMed  Google Scholar 

  31. Mercado-Pacheco J, Julio-Altamiranda Y, Sánchez-Tuirán E et al (2020) Variables affecting delignification of corn wastes using urea for total reducing sugars production. ACS Omega 5:12196–12201. https://doi.org/10.1021/acsomega.0c00645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hayouni E, Abedrabba M, Bouix M, Hamdi M (2007) The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian quercus coccifera l. and juniperus phoenicea l. fruit extracts. Food Chem 105:1126–1134. https://doi.org/10.1016/j.foodchem.2007.02.010

    Article  CAS  Google Scholar 

  33. Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014. https://doi.org/10.1021/jf0115589

    Article  CAS  PubMed  Google Scholar 

  34. Tlili N, Feriani A, Saadoui E et al (2017) Capparis spinosa leaves extract: Source of bioantioxidants with nephroprotective and hepatoprotective effects. Biomed Pharmacother 87:171–179. https://doi.org/10.1016/j.biopha.2016.12.052

    Article  CAS  PubMed  Google Scholar 

  35. Tian H, Shen Y, Yu H et al (2017) Effects of 4 probiotic strains in coculture with traditional starters on the flavor profile of yogurt: role of probiotics on yogurt flavor…. J Food Sci 82:1693–1701. https://doi.org/10.1111/1750-3841.13779

    Article  CAS  PubMed  Google Scholar 

  36. Shi X, Chen F, Xu Y et al (2015) Aromatic components produced by non- Saccharomyces Cerevisiae derived from natural fermentation of grape. Nat Prod Res 29:1870–1873. https://doi.org/10.1080/14786419.2015.1008475

    Article  CAS  PubMed  Google Scholar 

  37. Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin e. Anal Biochem 269:337–341. https://doi.org/10.1006/abio.1999.4019

    Article  CAS  PubMed  Google Scholar 

  38. Tipoe GL, Leung TM, Liong EC et al (2010) Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273:45–52. https://doi.org/10.1016/j.tox.2010.04.014

    Article  CAS  PubMed  Google Scholar 

  39. OliverH L, NiraJ R, Farr AL, RoseJ R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6

    Article  Google Scholar 

  40. Sõukand R, Pieroni A, Biró M et al (2015) An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. J Ethnopharmacol 170:284–296. https://doi.org/10.1016/j.jep.2015.05.018

    Article  PubMed  Google Scholar 

  41. Mantzourani I, Terpou A, Bekatorou A et al (2020) Functional pomegranate beverage production by fermentation with a novel synbiotic L. paracasei biocatalyst. Food Chem 308:125658. https://doi.org/10.1016/j.foodchem.2019.125658

    Article  CAS  PubMed  Google Scholar 

  42. Song Y-R, Shin N-S, Baik S-H (2014) Physicochemical and functional characteristics of a novel fermented pepper (Capsiccum annuum L.) leaves-based beverage using lactic acid bacteria. Food Sci Biotechnol 23:187–194. https://doi.org/10.1007/s10068-014-0025-4

    Article  CAS  Google Scholar 

  43. Brianceau S, Turk M, Vitrac X, Vorobiev E (2015) Combined densification and pulsed electric field treatment for selective polyphenols recovery from fermented grape pomace. Innov Food Sci Emerg Technol 29:2–8. https://doi.org/10.1016/j.ifset.2014.07.010

    Article  CAS  Google Scholar 

  44. Urbonaviciene D, Viskelis P, Bartkiene E et al (2015) The use of lactic acid bacteria in the fermentation of fruits and vegetables—technological and functional properties. In: Ekinci D (ed) Biotechnology. InTech, Rijeka

    Google Scholar 

  45. Mezzetti F, Fay JC, Giudici P, De Vero L (2017) Genetic variation and expression changes associated with molybdate resistance from a glutathione producing wine strain of Saccharomyces cerevisiae. PLoS ONE 12:e0180814. https://doi.org/10.1371/journal.pone.0180814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uchida M, Kurushima H, Ishihara K et al (2017) Characterization of fermented seaweed sauce prepared from nori (Pyropia yezoensis). J Biosci Bioeng 123:327–332. https://doi.org/10.1016/j.jbiosc.2016.10.003

    Article  CAS  PubMed  Google Scholar 

  47. Rita R-D, Zanda K, Daina K, Dalija S (2011) Composition of aroma compounds in fermented apple juice: effect of apple variety, fermentation temperature and inoculated yeast concentration. Procedia Food Sci 1:1709–1716. https://doi.org/10.1016/j.profoo.2011.09.252

    Article  CAS  Google Scholar 

  48. Yoshioka H, Tanaka M, Fujii H, Nonogaki T (2016) Sasa veitchii extract suppresses carbon tetrachloride-induced hepato- and nephrotoxicity in mice. Environ Health Prev Med 21:554–562. https://doi.org/10.1007/s12199-016-0581-8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mbarki S, Alimi H, Bouzenna H et al (2017) Phytochemical study and protective effect of Trigonella foenum graecum (Fenugreek seeds) against carbon tetrachloride-induced toxicity in liver and kidney of male rat. Biomed Pharmacother 88:19–26. https://doi.org/10.1016/j.biopha.2016.12.078

    Article  CAS  PubMed  Google Scholar 

  50. Li S, Khafipour E, Krause DO et al (2012) Effects of subacute ruminal acidosis challenges on fermentation and endotoxins in the rumen and hindgut of dairy cows. J Dairy Sci 95:294–303. https://doi.org/10.3168/jds.2011-4447

    Article  CAS  PubMed  Google Scholar 

  51. Mathew S, Abraham TE (2006) In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem Toxicol 44:198–206. https://doi.org/10.1016/j.fct.2005.06.013

    Article  CAS  PubMed  Google Scholar 

  52. Naczk M, Shahidi F (2006) Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. J Pharm Biomed Anal 41:1523–1542. https://doi.org/10.1016/j.jpba.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  53. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB (2010) Mechanisms of cisplatin nephrotoxicity. Toxins 2:2490–2518. https://doi.org/10.3390/toxins2112490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Katanić J, Mihailović V, Matić S et al (2015) The ameliorating effect of Filipendula hexapetala extracts on hepatorenal toxicity of cisplatin. J Funct Foods 18:198–212. https://doi.org/10.1016/j.jff.2015.07.004

    Article  Google Scholar 

  55. Kuriakose GC, Kurup MG (2011) Antioxidant and antihepatotoxic effect of spirulina laxissima against carbon tetrachloride induced hepatotoxicity in rats. Food Funct 2:190. https://doi.org/10.1039/c0fo00163e

    Article  CAS  PubMed  Google Scholar 

  56. Jayakumar T, Ramesh E, Geraldine P (2006) Antioxidant activity of the oyster mushroom, pleurotus ostreatus, on CCl4-induced liver injury in rats. Food Chem Toxicol 44:1989–1996. https://doi.org/10.1016/j.fct.2006.06.025

    Article  CAS  PubMed  Google Scholar 

  57. Ravikumar S, Gnanadesigan M (2011) Hepatoprotective and antioxidant activity of a mangrove plant Lumnitzera racemosa. Asian Pac J Trop Biomed 1:348–352. https://doi.org/10.1016/S2221-1691(11)60078-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159. https://doi.org/10.1016/S1360-1385(97)01018-2

    Article  Google Scholar 

  59. Gadhoumi H, Hayouni ELA, Martinez-Rojas E et al (2022) Biochemical composition, antimicrobial and antifungal activities assessment of the fermented medicinal plants extract using lactic acid bacteria. Arch Microbiol 204:374. https://doi.org/10.1007/s00203-022-02985-9

    Article  CAS  PubMed  Google Scholar 

  60. Luengo E, Álvarez I, Raso J (2013) Improving the pressing extraction of polyphenols of orange peel by pulsed electric fields. Innov Food Sci Emerg Technol 17:79–84. https://doi.org/10.1016/j.ifset.2012.10.005

    Article  CAS  Google Scholar 

  61. Prakash Maran J, Sivakumar V, Thirugnanasambandham K, Sridhar R (2013) Optimization of microwave assisted extraction of pectin from orange peel. Carbohydr Polym 97:703–709. https://doi.org/10.1016/j.carbpol.2013.05.052

    Article  CAS  PubMed  Google Scholar 

  62. Rjeibi I, Feriani A, Ben Saad A et al (2017) Phytochemical characterization and bioactivity of Lycium europaeum: a focus on antioxidant, antinociceptive, hepatoprotective and nephroprotective effects. Biomed Pharmacother 95:1441–1450. https://doi.org/10.1016/j.biopha.2017.09.035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Honorable Vice Institute of Pasteur, Tunis, Tunisia. This study was supported by a grant from the Ministry of Tunisia, Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology (LR15CBBC06) at the Ecopark of Borj-cédria. BP-901, 2050 Hammam-Lif. Tunisia.Authors are very grateful to Dr. Saito Ari Directo: Sanko Sangyo Co., Okinawa, Japan for kindly providing saion-EM inocula.

Funding

This study was supported by University of Tunis EL Manar, and Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology (LR15CBBC06) of Borj-cédria. BP-901, 2050 Hammam-Lif. Tunisia and Experimental Commodities and Animal Care Service: Institute of Pasteur, Tunis, Tunisia.

Author information

Authors and Affiliations

Authors

Contributions

H. G conceptualization methodology, performed the majority of the experiments and revised the original manuscript. Z.D. assisted with data analysis and write the original manuscript, W.Y. validation, data curation. R. S. designed the study and performed the experiments. K. M. performed the animal experiment, M. T. performed the statistical data analyses, A. C. contributed to the design and analysed the manuscript, M. S. T. contributed to drafting the manuscript, validation, data curation, visualization, E.A.H contributed to drafting the manuscript. All authors have read and approved the final version of the submitted manuscript.

Corresponding author

Correspondence to Hamza Gadhoumi.

Ethics declarations

Conflict of interest

The authors of this manuscript certify that they have NO affiliation with or involvement in any organization or entity with any financial interest. I certify that I am submitting the manuscript on behalf of all the authors.

Ethical approval

This study obtained the ethical approval from the Bio-Medical Ethics Committee of the Pasteur Institute of Tunis, Tunisia 2019/2/I/ LR16IPT09/V2.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadhoumi, H., Dhouafli, Z., Yeddes, W. et al. Biochemical Composition, Antioxidant Capacity and Protective Effects of Three Fermented Plants Beverages on Hepatotoxicity and Nephrotoxicity Induced by Carbon Tetrachloride in Mice. Indian J Microbiol 64, 229–243 (2024). https://doi.org/10.1007/s12088-023-01172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-023-01172-8

Keywords

Navigation