Skip to main content

Advertisement

Log in

Virulence Factors in Candida albicans and Streptococcus mutans Biofilms Mediated by Farnesol

  • Original Research Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of farnesol on the production of acids and hydrolytic enzymes by biofilms of Streptococcus mutans and Candida albicans. The present study also evaluated the time-kill curve and the effect of farnesol on matrix composition and structure of single-species and dual-species biofilms. Farnesol, at subinhibitory concentrations, showed a significant reduction in S. mutans biofilm acid production, but did not alter C. albicans hydrolytic enzyme production. The number of cultivable cells of both microorganisms was significantly reduced after 8 h of contact with farnesol. Extracellular matrix protein content was reduced for biofilms formed in the presence of farnesol. In addition, confocal laser scanning and scanning electron microscopy displayed structural alterations in all biofilms treated with farnesol, which included reduction in viable cells and extracellular matrix. In conclusion, farnesol showed favorable properties controlling some virulence factors of S. mutans and C. albicans biofilms. These findings should stimulate further studies using this quorum-sensing molecule, combined with other drugs, to prevent or treat biofilm-associated oral diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bowen WH, Madison KM, Pearson SK (1988) Influence of desalivation in rats on incidence of caries in intact cagemates. J Dent Res 67:1316–1318. https://doi.org/10.1177/00220345880670101401

    Article  CAS  PubMed  Google Scholar 

  2. Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, Koo H (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82:1968–1981. https://doi.org/10.1128/IAI.00087-14

    Article  PubMed  PubMed Central  Google Scholar 

  3. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36. https://doi.org/10.1016/S0966-842X(02)00002-1

    Article  CAS  PubMed  Google Scholar 

  4. Nobile CJ, Nett JE, Hernday AD, Homann OR, Deneault JS, Nantel A, Andes DR, Johnson AD, Mitchell AP (2009) Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 7:e1000133. https://doi.org/10.1371/journal.pbio.1000133

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR (2014) Novel entries in a fungal biofilm matrix encyclopedia. Mbio 5:01333. https://doi.org/10.1128/mBio.01333-14

    Article  Google Scholar 

  6. Schaller M, Borelli C, Korting HC, Hube B (2005) Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48:365–377. https://doi.org/10.1111/j.1439-0507.2005.01165.x

    Article  CAS  PubMed  Google Scholar 

  7. Rapala-Kozik M, Bochenska O, Zajac D, Karkowska-Kuleta J, Gogol M, Zawrotniak M, Kozik A (2017) Extracellular proteinases of Candida species pathogenic yeasts. Mol Oral Microbiol. https://doi.org/10.1111/omi.12206

    Google Scholar 

  8. Marcenes W, Kassebaum NJ, Bernabe E, Flaxman A, Naghavi M, Lopez A, Murray CJ (2013) Global burden of oral conditions in 1990–2010: a systematic analysis. J Dent Res 92:592–597. https://doi.org/10.1177/0022034513490168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raja M, Hannan A, Ali K (2010) Association of oral candidal carriage with dental caries in children. Caries Res 44:272–276. https://doi.org/10.1159/000314675

    Article  CAS  PubMed  Google Scholar 

  10. Peleg AY, Hogan DA, Mylonakis E (2010) Medically important bacterial-fungal interactions. Nat Rev Microbiol 8:340–349. https://doi.org/10.1038/nrmicro2313

    Article  CAS  PubMed  Google Scholar 

  11. Zhang LH, Dong YH (2004) Quorum sensing and signal interference: diverse implications. Mol Microbiol 53:1563–1571. https://doi.org/10.1111/j.1365-2958.2004.04234.x

    Article  CAS  PubMed  Google Scholar 

  12. Pacheco AR, Sperandio V (2009) Inter-kingdom signaling: chemical language between bacteria and host. Curr Opin Microbiol 12:192–198. https://doi.org/10.1016/j.mib.2009.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koul S, Kalia VC (2017) Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population. Indian J Microbiol 57:100–108. https://doi.org/10.1007/s12088-016-0633-1

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Tu F, Gui Z, Lu X, Chu W (2013) Antibiotic resistance profiles and quorum sensing-dependent virulence factors in clinical isolates of pseudomonas aeruginosa. Indian J Microbiol 53:163–167. https://doi.org/10.1007/s12088-013-0370-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu M, Zhang C, Mu Y, Shen Q, Feng Y (2010) Indole affects biofilm formation in bacteria. Indian J Microbiol 50:362–368. https://doi.org/10.1007/s12088-011-0142-1

    Article  CAS  PubMed  Google Scholar 

  16. Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R (2007) Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell 6:2429–2436. https://doi.org/10.1128/EC.00252-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD (2006) Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol 59:753–764. https://doi.org/10.1111/j.1365-2958.2005.04976.x

    Article  CAS  PubMed  Google Scholar 

  18. Lamfon H, Porter SR, McCullough M, Pratten J (2003) Formation of Candida albicans biofilms on non-shedding oral surfaces. Eur J Oral Sci 111:465–471. https://doi.org/10.1111/j.0909-8836.2003.00084.x

    Article  PubMed  Google Scholar 

  19. Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R, Barbosa DB, Henriques M (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 27:711–719. https://doi.org/10.1080/08927014.2011.599101

    Article  CAS  PubMed  Google Scholar 

  20. Arias LS, Delbem AC, Fernandes RA, Barbosa DB, Monteiro DR (2016) Activity of tyrosol against single and mixed-species oral biofilms. J Appl Microbiol 120:1240–1249. https://doi.org/10.1111/jam.13070

    Article  CAS  PubMed  Google Scholar 

  21. Alves F, de Oliveira Mima EG, Passador RCP, Bagnato VS, Jorge JH, Pavarina AC (2017) Virulence factors of fluconazole-susceptible and fluconazole-resistant Candida albicans after antimicrobial photodynamic therapy. Lasers Med Sci 32:815–826. https://doi.org/10.1007/s10103-017-2177

    Article  PubMed  Google Scholar 

  22. Fernandes RA, Monteiro DR, Arias LS, Fernandes GL, Delbem AC, Barbosa DB (2016) Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation. Biofouling 32:329–338. https://doi.org/10.1080/08927014.2016.1144053

    Article  CAS  PubMed  Google Scholar 

  23. Hasan S, Danishuddin M, Adil M, Singh K, Verma PK, Khan AU (2012) Efficacy of E. officinalis on the cariogenic properties of Streptococcus mutans: a novel and alternative approach to suppress quorum-sensing mechanism. PLoS ONE 7:e40319. https://doi.org/10.1371/journal.pone.0040319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aoki S, Ito-Kuwa S, Nakamura Y, Masuhara T (1990) Comparative pathogenicity of a wild-type strain and respiratory mutants of Candida albicans in mice. Zentralblatt fur Bakteriologie: Int J Med Microbiol 273:332–343. https://doi.org/10.1016/S0934-8840(11)80437-8

    Article  CAS  Google Scholar 

  25. Price MF, Wilkinson ID, Gentry LO (1982) Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 20:7–14. https://doi.org/10.1080/00362178285380031

    Article  CAS  PubMed  Google Scholar 

  26. Tsang CS, Chu FC, Leung WK, Jin LJ, Samaranayake LP, Siu SC (2007) Phospholipase, proteinase and haemolytic activities of Candida albicans isolated from oral cavities of patients with type 2 diabetes mellitus. J Med Microbiol 56:1393–1398. https://doi.org/10.1099/jmm.0.47303-0

    Article  CAS  PubMed  Google Scholar 

  27. Sacristan B, Blanco MT, Galan-Ladero MA, Blanco J, Perez-Giraldo C, Gomez-Garcia AC (2011) Aspartyl proteinase, phospholipase, hemolytic activities and biofilm production of Candida albicans isolated from bronchial aspirates of ICU patients. Med Mycol 49:94–97. https://doi.org/10.3109/13693786.2010.482947

    Article  CAS  PubMed  Google Scholar 

  28. Williamson MI, Samaranayake LP, MacFarlane TW (1986) Phospholipase activity as a criterion for biotyping Candida albicans. J Med Vet Mycol 24:415–417. https://doi.org/10.1080/02681218680000631

    Article  CAS  PubMed  Google Scholar 

  29. Tong Z, Zhang L, Ling J, Jian Y, Huang L, Deng D (2014) An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans. PLoS ONE 9:e99513. https://doi.org/10.1371/journal.pone.0099513

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhou LN, Yao WF, Liu J, Shang J, Shan MQ, Zhang L, Ding AW (2013) Protective effect of different solvent extracts from platycladi cacumen carbonisatum on LPS-induced human umbilical vein endothelial cells damage. Zhongguo Zhong Yao Za Zhi 38:3933–3938. https://doi.org/10.4268/cjcmm20132227

    PubMed  Google Scholar 

  31. Dubois MGK, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 38:3933–3938. https://doi.org/10.1021/ac60111a017

    Google Scholar 

  32. Klein MI, Hwang G, Santos PH, Campanella OH, Koo H (2015) Streptococcus mutans-derived extracellular matrix in cariogenic oral biofilms. Front Cell Infect Microbiol 13:5–10. https://doi.org/10.3389/fcimb.2015.00010

    Google Scholar 

  33. Paes Leme AF, Koo H, Bellato CM, Bedi G, Cury JA (2006) The role of sucrose in cariogenic dental biofilm formation–new insight. J Dent Res 85:878–887. https://doi.org/10.1177/154405910608501002

    Article  CAS  PubMed  Google Scholar 

  34. Jeon JG, Pandit S, Xiao J, Gregoire S, Falsetta ML, Klein MI, Koo H (2011) Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms. Int J Oral Sci 3:98–106. https://doi.org/10.4248/IJOS11038

    Article  PubMed  PubMed Central  Google Scholar 

  35. Singh BN, Upreti DK, Singh BR, Pandey G, Verma S, Roy S, Naqvi AH, Rawat AK (2015) Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob Agents Chemother 59:2153–2168. https://doi.org/10.1128/AAC.03599-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH (2002) Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob Agents Chemother 46:1302–1309. https://doi.org/10.1128/AAC.46.5.1302-1309.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Melo NI, de Carvalho CE, Fracarolli L, Cunha WR, Veneziani RC, Martins CH, Crotti AE (2015) Antimicrobial activity of the essential oil of Tetradenia riparia (Hochst.) Codd. (Lamiaceae) against cariogenic bacteria. Braz J Microbiol 46:519–525. https://doi.org/10.1590/S1517-838246246220140649

    Article  PubMed  PubMed Central  Google Scholar 

  38. Polke M, Leonhardt I, Kurzai O, Jacobsen ID (2017) Farnesol signalling in Candida albicans–more than just communication. Crit Rev Microbiol 44:230–243. https://doi.org/10.1080/1040841X.2017.1337711

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank George Duchow for the English review of the manuscript. This study was supported by the São Paulo Research Foundation (FAPESP, Grant Number 2013/23592-0), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debora Barros Barbosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, R.A., Monteiro, D.R., Arias, L.S. et al. Virulence Factors in Candida albicans and Streptococcus mutans Biofilms Mediated by Farnesol. Indian J Microbiol 58, 138–145 (2018). https://doi.org/10.1007/s12088-018-0714-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-018-0714-4

Keywords

Navigation