Skip to main content

Advertisement

Log in

Comparative Virulotyping of Salmonella typhi and Salmonella enteritidis

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Members of Salmonella enterica are important foodborne pathogens of significant public health concern worldwide. This study aimed to determine a range of virulence genes among typhoidal (S. typhi) and non-typhoidal (S. enteritidis) strains isolated from different geographical regions and different years. A total of 87 S. typhi and 94 S. enteritidis strains were tested for presence of 22 virulence genes by employing multiplex PCR and the genetic relatedness of these strains was further characterized by REP-PCR. In S. typhi, invA, prgH, sifA, spiC, sopB, iroN, sitC, misL, pipD, cdtB, and orfL were present in all the strains, while sopE, agfC, agfA, sefC, mgtC, and sefD were present in 98.8, 97.7, 90.8, 87.4, 87.4 and 17.2 %, of the strains, respectively. No lpfA, lpfC, pefA, spvB, or spvC was detected. Meanwhile, in S. enteritidis, 15 genes, agfA, agfC, invA, lpfA, lpfC, sefD, prgH, spiC, sopB, sopE, iroN, sitC, misL, pipD, and orfL were found in all S. enteritidis strains 100 %, followed by sifA and spvC 98.9 %, pefA, spvB and mgtC 97.8 %, and sefC 90.4 %. cdtB was absent from all S. enteritidis strains tested. REP-PCR subtyped S. typhi strains into 18 REP-types and concurred with the virulotyping results in grouping the strains, while in S. enteritidis, REP-PCR subtyped the strains into eight profiles and they were poorly distinguishable between human and animal origins. The study showed that S. typhi and S. enteritidis contain a range of virulence factors associated with pathogenesis. Virulotyping is a rapid screening method to identify and profile virulence genes in Salmonella strains, and improve an understanding of potential risk for human and animal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Galanis E, Lo Fo Wong DM, Patrick ME, Binsztein N, Cieslik A, Chalermchikit T, Aidara-Kane A, Ellis A, Angulo FJ, Wegener HC, World Health Organization Global Salm-Surv (2006) Web-based surveillance and global Salmonella distribution, 2000–2002. Emerg Infect Dis 12:381–388

    PubMed  Google Scholar 

  2. Hensel M (2004) Evolution of pathogenicity islands of Salmonella enterica. Int J Med Microbiol 294:95–102

    Article  PubMed  CAS  Google Scholar 

  3. Skyberg J, Logue C, Nolan L (2006) Virulence genotyping of Salmonella spp. with multiplex PCR. Avian Dis 50:77–81

    Article  PubMed  Google Scholar 

  4. Galán JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573

    Article  PubMed  Google Scholar 

  5. Rychlik I, Gregorova D, Hradecka H (2006) Distribution and function of plasmids in Salmonella enterica. Vet Microbiol 112:1–10

    Article  PubMed  CAS  Google Scholar 

  6. de Jong HK, Parry CM, van der Poll T, Wiersinga WJ (2012) Host–pathogen interaction in invasive salmonellosis. PLoS Pathog 8:e1002933

    Article  PubMed  Google Scholar 

  7. Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22:2196–2203

    Article  PubMed  CAS  Google Scholar 

  8. Garai P, Gnanadhas DP, Chakravortty D (2012) Salmonella enterica serovars Typhimurium and Typhi as model organisms: revealing paradigm of host-pathogen interactions. Virulence 3:377–388

    Article  PubMed  Google Scholar 

  9. Crump JA, Mintz ED (2010) Global trends in typhoid and paratyphoid fever. Clin Infect Dis 50:241–246

    Article  PubMed  Google Scholar 

  10. Chai LC, Kong BH, Elemfareji OI, Thong KL (2012) Variable carbon catabolism among Salmonella enterica serovar Typhi isolates. PLoS ONE 7:e36201

    Article  PubMed  CAS  Google Scholar 

  11. Demczuk W, Woodward D, Ahmed R, Clark C, Tabor H, Dore K, Ciampa N, Muckle A (2005) Laboratory surveillance data for enteric pathogens in Canada: annual summary 2002 and 2003. Winnipeg, MB, Health Canada. http://publications.gc.ca/pub?id=279282&sl=0. Accessed 1 April 2013

  12. Heithoff DM, Shimp WR, Lau PW, Badie G, Enioutina EY, Daynes RA, Byrne BA, House JK, Mahan MJ (2008) Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol 74:1757–1766

    Article  PubMed  CAS  Google Scholar 

  13. Nazemi A, Mirinargasi M, Merikhi N, Sharifi SH (2011) Distribution of pathogenic genes aatA, aap, aggR, among Uropathogenic Escherichia coli (UPEC) and their linkage with StbA gene. Indian J Microbiol 51:355–358

    Article  PubMed  CAS  Google Scholar 

  14. Lim KT, Hanifah YA, Yusof MYM, Thong KL (2012) Characterisation of the virulence factors and genetic types of methicillin susceptible Staphylococcus aureus from patients and healthy individuals. Indian J Microbiol. doi:10.1007/s12088-012-0286-7

    PubMed  Google Scholar 

  15. Parvathi A, Mendez D, Anto C (2011) Distribution of putative virulence genes and antimicrobial drug resistance in Vibrio harveyi. Indian J Microbiol 51:332–337

    Article  PubMed  Google Scholar 

  16. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  17. Huehn S, La Ragione RM, Anjum M, Saunders M, Woodward MJ, Bunge C, Helmuth R, Hauser E, Guerra B, Beutlich J, Brisabois A, Peters T, Svensson L, Madajczak G, Litrup E, Imre A, Herrera-Leon S, Mevius D, Newell DG, Malorny B (2010) Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog Dis 7:523–535

    Article  PubMed  CAS  Google Scholar 

  18. Khoo CH, Cheah YK, Lee LH, Sim JH, Salleh NA, Sidik SM, Radu S, Sukardi S (2009) Virulotyping of Salmonella enterica subsp. enterica isolated from indigenous vegetables and poultry meat in Malaysia using multiplex-PCR. Antonie Van Leeuwenhoek 96:441–457

    Article  PubMed  CAS  Google Scholar 

  19. Thong KL, Cheong YM, Puthucheary SD, Koh CL, Pang T (1994) Epidemiologic analysis of sporadic Salmonella typhi isolates and those from outbreaks by pulsed-field gel electrophoresis. J Clin Microbiol 32:1135–1141

    PubMed  CAS  Google Scholar 

  20. Thong KL, Puthucheary SD, Yassin RM, Sudarmono P, Padmidewi M, Soewandojo E, Handojo I, Sarasombath S, Pang T (1995) Analysis of Salmonella typhi isolates from Southeast Asia by pulsed-field gel electrophoresis. J Clin Microbiol 33:1938–1941

    PubMed  CAS  Google Scholar 

  21. Thong KL, Cordano AM, Yasin RM, Pang T (1996) Molecular analysis of environmental and human isolates of Salmonella typhi. Appl Environ Microbiol 62:271–274

    PubMed  CAS  Google Scholar 

  22. Thong KL, Lai WL, Dhanoa A (2011) Antimicrobial susceptibility and pulsed: field gel electrophoretic analysis of Salmonella in a tertiary hospital in northern Malaysia. J Infect Public Health 4:65–72

    Article  PubMed  Google Scholar 

  23. Tiong V, Thong KL, Yusof MYM, Abu Hanifah Y, Sam JI-C, Hassan H (2010) Macrorestriction analysis and antimicrobial susceptibility profiling of Salmonella enterica at a University Teaching Hospital, Kuala Lumpur. Jpn J Infect Dis 63:317–322

    PubMed  Google Scholar 

  24. Hughes L, Shopland S, Wigley P, Bradon H, Leatherbarrow A, Williams N, Bennett M, de Pinna E, Lawson B, Cunningham A, Chantrey J (2008) Characterization of Salmonella enterica serotype Typhimurium isolates from wild birds in northern England from 2005–2006. BMC Vet Res 4:4

    Article  PubMed  Google Scholar 

  25. Bäumler AJ, Gilde AJ, Tsolis RM, van der Velden AWM, Ahmer BM, Heffron F (1997) Contribution of horizontal gene transfer and deletion events to the development of distinctive patterns of fimbrial operons during evolution of Salmonella serotypes. J Bacteriol 179:317–322

    PubMed  Google Scholar 

  26. Bäumler AJ, Heffron F (1995) Identification and sequence analyses of lpfABCDE, a fimbrial putative operon of Salmonella typhimurium. J Bacteriol 177:2087–2097

    PubMed  Google Scholar 

  27. Gibson DL, White AP, Rajotte CM, Kay WW (2007) AgfC and AgfE facilitate extracellular thin aggregative fimbriae synthesis in Salmonella enteritidis. Microbiology 153:1131–1140

    Article  PubMed  CAS  Google Scholar 

  28. Rahn K, De Grandis SA, Clarke RC, Mcewen SA, Galán JE, Ginocchio C, Curtiss R III, Gyles CL (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6:271–279

    Article  PubMed  CAS  Google Scholar 

  29. Soto SM, Rodríguez I, Rodicio MR, Vila J, Mendoza MC (2006) Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macro restriction profiles. J Med Microbiol 55:365–373

    Article  PubMed  CAS  Google Scholar 

  30. Chiu C, Ou J (1996) Rapid identification of Salmonella serovars in feces by specific detection of virulence genes, invA and spvC, by an enrichment broth culture-multiplex PCR combination assay. J Clin Microbiol 34:2619–2622

    PubMed  CAS  Google Scholar 

  31. Bennasar A, de Luna G, Cabrer B, Lalucat J (2000) Rapid identification of Salmonella typhimurium, S. enteritidis and S. virchow isolates by polymerase chain reaction based fingerprinting methods. Int Microbiol 3:31–38

    PubMed  CAS  Google Scholar 

  32. Ibarra JA, Steele-Mortimer O (2009) Salmonella: the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11:1579–1586

    Article  PubMed  CAS  Google Scholar 

  33. Reis RS, Horn F (2010) Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases. Gut Pathog 2:8

    Article  PubMed  Google Scholar 

  34. Alix E, Blanc-Potard A-B (2008) Peptide-assisted degradation of the Salmonella MgtC virulence factor. EMBO J 27:546–557

    Article  PubMed  CAS  Google Scholar 

  35. Kaneshige T, Yaguchi K, Ohgitani T (2009) Siderophore receptor IroN is an important protective antigen against Salmonella infection in chickens. Avian Dis 53:563–567

    Article  PubMed  Google Scholar 

  36. Haghjoo E, Galán JE (2004) Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci USA 101:4614–4619

    Article  PubMed  CAS  Google Scholar 

  37. Ceelen LM, Decostere A, Ducatelle R, Haesebrouck F (2006) Cytolethal distending toxin generates cell death by inducing a bottleneck in the cell cycle. Microbiol Res 161:109–120

    Article  PubMed  CAS  Google Scholar 

  38. Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, Barron A, Layton A, Pickard D, Kingsley RA, Bignell A, Clark L, Harris B, Ormond D, Abdellah Z, Brooks K, Cherevach I, Chillingworth T, Woodward J, Norberczak H, Lord A, Arrowsmith C, Jagels K, Moule S, Mungall K, Saunders M, Whitehead S, Chabalgoity JA, Maskell D, Humphreys T, Roberts M, Barrow PA, Dougan G, Parkhill J (2008) Comparative genome analysis of Salmonella enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res 18:1624–1637

    Article  PubMed  CAS  Google Scholar 

  39. Clayton DJ, Bowen AJ, Hulme SD, Buckley AM, Deacon VL, Thomson NR, Barrow PA, Morgan E, Jones MA, Watson M, Stevens MP (2008) Analysis of the role of 13 major fimbrial subunits in colonisation of the chicken intestines by Salmonella enterica serovar Enteritidis reveals a role for a novel locus. BMC Microbiol 8:228

    Article  PubMed  Google Scholar 

  40. Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z, Chaussé AM, Grépinet O, Namdari F, Roche SM, Rossignol A, Virlogeux-Payant I (2012) Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 1:243–258

    Article  PubMed  CAS  Google Scholar 

  41. Popat R, Crusz SA, Diggle SP (2008) The social behaviours of bacterial pathogens. Br Med Bull 87:63–75

    Article  PubMed  Google Scholar 

  42. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245

    Article  PubMed  CAS  Google Scholar 

  43. Oliveira SDd, Bessa MC, Santos LRd, Cardoso MRd, Brandelli A, Canal CW (2007) Phenotypic and genotypic characterization of Salmonella enteritidis isolates. Braz J Microbiol 38:720–728

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by Grants PS 284/2008C and UM.C/HIR/MOHE/02 (A000002-50001) from the University of Malaya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwai Lin Thong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elemfareji, O.I., Thong, K.L. Comparative Virulotyping of Salmonella typhi and Salmonella enteritidis . Indian J Microbiol 53, 410–417 (2013). https://doi.org/10.1007/s12088-013-0407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-013-0407-y

Keywords

Navigation