Skip to main content
Log in

Interaction of Azospirillum brasilense and Glomus intrarradix in Sugar Cane Roots

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Fifteen-day-old variety NA 56-79 sugar cane seedlings were inoculated with Azospirillum brasilense and Glomus intrarradix. This article aims at examining changes in sugar cane root seedlings inoculated with Glomus intrarradix and Azospirillum brasilense, the increase in microbial biomass and the acetylene reduction process as well. The internal root colonization was studied 20 days after inoculation using scanning and a transmission electron microscope. Both microorganisms entered the sugar cane root through the emergent lateral roots. The microorganisms were capable of coexisting both intra and intercellularly, producing changes in the cell wall, thus allowing colonization and interaction between the organisms. These changes increased the number of microorganisms inside the root as well as acetylene nitrogen reduction. Sugar cane plant biomass increased with joint-inoculation. The number of endophytic microorganisms and nitrogen fixing activity increased when they were colonized by Azospirillum and Glomus together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Döbereiner J, Pedrosa FO (1987) Nitrogen fixing bacteria in non-legume crop plant Brock. Springer Series in Contemporary Bioscience. Science Tech Publisher, Madison, p 156

    Google Scholar 

  2. Döbereiner J (1992) History and new perspectives of diazotrophs in association with non-leguminous plants. Symbiosis 13:1–13

    Google Scholar 

  3. Lima E, Boddey RM, Döbereiner J (1987) Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance. Soil Biol Biochem 19:165–170

    Article  CAS  Google Scholar 

  4. Urquiaga S, Cruz KHS, Boddey RM (1992) Contribution of nitrogen fixation to sugar cane: N15 and nitrogen balance estimate. Soil Sci Soc Am J 56:105–114

    Article  Google Scholar 

  5. Bellone CH, Bellone SC, Pedraza RO (1995) Chitinase expression in strawberry root colonized by Azospirillum brasilense and V. A. Mycorrhiza. In: Fendrik I, Del Gallo M, Vanderleyden J, Zamaroczy M (eds) Azospirillum VI and related microorganisms, vol 37. Springer-Verlag, Heidelberg, pp 161–165

    Chapter  Google Scholar 

  6. Boddey RM, Urquiaga S, Reis V, Döbereiner J (1991) Biological nitrogen fixation associated with sugar cane. Plant Soil 137:11–117

    Article  Google Scholar 

  7. Döbereiner J, Baldani VLD, Olivares F, Reis VM (1993) Endophytic diazotrophs: the key to BNF in gramineous plants. In: Hegazi NA, Fayez M, Monib M (eds) Nitrogen fixation with non-legumes. Cairo University, Giza, pp 395–408

    Google Scholar 

  8. Döbereiner J, VlD Baldani, Reis VM (1995) Endophytic occurrence of diazotrophs bacteria in non-leguminous crops. In: Fendrik et al (eds) Azospirillum VI and related microorganims. Springer-Verlag, Heidelberg, pp 3–14

    Chapter  Google Scholar 

  9. Hurek T, Reinhold-Hurek B, Turner GL, Bergersen FJ (1994) Augmented rates of respiration and efficient nitrogen fixation at nanomolar concentrations of dissolved O2 in hyperinduced Azoarcus sp. strain BH72. J Bacteriol 176:4726–4733

    PubMed  CAS  Google Scholar 

  10. James EK, Reis VM, Olivares FL, Baldani JI, Döbereiner J (1994) Infection of sugar cane by nitrogen fixing bacteria. J Exp Bot 45:757–766

    Article  CAS  Google Scholar 

  11. Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J (1996) Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots stem and leaves predominantly of gramineae. Biol Fertil Soils 21:197–200

    Article  Google Scholar 

  12. Pedraza RO, Diaz Ricci JC (2003) Genetic stability of Azospirillum brasilense after passing through the root interior of sugar cane. Symbiosis 34:69–83

    Google Scholar 

  13. Phyllips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizae fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  14. Bellone CH (1996) Micorrización y Fijación de Nitrógeno en el Área Cañera de la Provincia de Tucumán. FAZ de la Universidad Nacional de Tucumán, Tesis, p 317

    Google Scholar 

  15. Bellone CH, Bellone SC, Pedraza RO, Monzón MA (1997) Cell colonization and infection thread in sugar cane roots by Acetobacter diazotrophicus. Soil Biol Biochem 29:965–967

    Article  CAS  Google Scholar 

  16. Patrikin DG, Döberiner J, Jain DK (1983) Sites and processes of association between diazotrophs and grasses. Can J Microbiol 29:900–915

    Article  Google Scholar 

  17. Reis VM, Olivares FL, Döbereiner J (1994) Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol 10:101–104

    Article  Google Scholar 

  18. Bellone CH (1983) Actividad celulolítica de tejidos no diferenciados de caña de azúcar inoculadas con dos especies de Azospirillum. Rev Agron Noroeste Argent XIX:4–8

    Google Scholar 

  19. Bellone CH, Carrizo de Bellone S (1993) Nitrogenase, cellulase activity in sugar cane roots inoculated together with va mycorrhiza and nitrogen-fixing bacteria. In: Hegazy N, Fayez M, Monib M (eds) Nitrogen fixation with non-legumes. The American University in Cairo Press, Cairo, pp 69–75

    Google Scholar 

  20. Bellone CH (2002) Especies de endomicorrizas en caña de azúcar en Tucumán. Manejo de sistemas microbianos para optimizar la producción agrícola y silvopastoril en algunas áreas del NOA, pp 117–121

  21. Paula MA, Reis VM, Döbereiner J (1991) Interaction of Glomus clarum with Acetobacter diazotrophicus in infections of sweet potato (Iponema batata), sugar cane (Saccharum spp.) and sweet sorghum (Sorghum vulgare). Biol Fertil Soil 11:111–115

    Article  Google Scholar 

  22. Döbereiner J, Baldani DVL, Baldani JI (1995) Como isolar e identificar bacterias diazotroficas de plantas năo-leguminosas. MAARA EMBRAPA CNPAB, Brasilia, p 60

    Google Scholar 

  23. Morton JM, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales. Two new suborders, Glominiae and Gigasporinae, and two new families, Acaulosporaceae, and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  24. Shenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi, 3rd edn. Synergistic Publications, Gainesville, p 286

    Google Scholar 

  25. Hoagland DR, Arnon DL (1950) The water culture method for growing plant without soil. University of California, Berkeley, p 32

    Google Scholar 

  26. Genderman CW, Nicolson JH (1963) Spores of mycorrhizal species extracted from soil by wet sieving and decanting. Trans the Br Mycol Soc 46:235–246

    Article  Google Scholar 

  27. Bellone CH and Monzon de Asconegui MA (1987) Electron microscopy observation of Azospirillum spp. cell within sugar cane (Saccharum spp) roots. 5th Congress International of Nitrogen Fixation. Brazil, pp 85–87

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Bellone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellone, C.H., de Bellone Silvia, C. Interaction of Azospirillum brasilense and Glomus intrarradix in Sugar Cane Roots. Indian J Microbiol 52, 70–75 (2012). https://doi.org/10.1007/s12088-011-0208-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0208-0

Keywords

Navigation