Skip to main content
Log in

Deep reinforcement learning-based task scheduling and resource allocation for NOMA-MEC in Industrial Internet of Things

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Mobile Edge Computing (MEC) and Non-Orthogonal Multiple Access (NOMA) have been treated as promising technologies to process the delay-sensitive tasks in the Industrial Internet of Things (IIoT) network. The cooperation among multiple MEC servers is essential to improve the processing capacity of MEC systems. However, the dynamic IIoT environment with unknown changing models, including time-varying wireless channels, diversified task requests, and dynamic load on wireless resources and multiple MEC servers, may continuously affect the task offloading decision and NOMA user pairing, which brings great challenges to the resource management in the NOMA-MEC-based IIoT network. In order to solve this problem, we design a distributed deep reinforcement learning (DRL) based solution to improve the task satisfaction ratio by jointly optimizing the task offloading decision and the sub-channel assignment to support the binary computing offloading policy. For each IIoT device agent, to deal with the problem of partial state observability, the Recurrent Neural Network (RNN) is employed to predict the load states of sub-channels and MEC servers, which is further used for the decision of the RL agent. Simulation results show that the proposed prediction-based-DRL (P-DRL) method can achieve higher task satisfaction ratio than exiting schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qiu T, Chi J, Zhou X, Ning Z, Atiquzzaman M, Wu DO (2020) Edge computing in industrial Internet of Things: Architecture, advances and challenges. IEEE Commun Surv Tutor 22(4):2462–2488

    Article  Google Scholar 

  2. Illa PK, Padhi N (2018) Practical guide to smart factory transition using IoT, big data and edge analytics. IEEE Access 6:55162–55170

    Article  Google Scholar 

  3. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing - a key technology towards 5G. ETSI White Paper 11(11):1–16

    Google Scholar 

  4. Tran TX, Pompili D (2019) Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Trans Veh Technol 68(1):856–868

    Article  Google Scholar 

  5. Zhao M, Wang W, Wang Y, Zhang Z (2019) Load scheduling for distributed edge computing: A communication-computation tradeoff. Peer Peer Netw Appl 12:1418–1432

    Article  Google Scholar 

  6. Li M, Gao J, Zhao L, Shen X (2020) Deep reinforcement learning for collaborative edge computing in vehicular networks. IEEE Trans Cognit Commun Netw 6(4):1122–1135

    Article  Google Scholar 

  7. Bu C, Wang J (2021) Computing tasks assignment optimization among edge computing servers via SDN. Peer Peer Netw Appl 14:1190–1206

    Article  Google Scholar 

  8. Tan L, Kuang Z, Zhao L, Liu A (2021) Energy-efficient joint task offloading and resource allocation in OFDMA-based collaborative edge computing. IEEE Trans Wirel Commun Early Access 1–14

  9. Ding Z, Lei X, Karagiannidis GK, Schober R, Yuan J, Bhargava VK (2017) A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE J Sel Areas Commun 35(10):2181–2195

    Article  Google Scholar 

  10. Ding Z, Fan P, Poor HV (2019) Impact of non-orthogonal multiple access on the offloading of mobile edge computing. IEEE Trans Commun 67(1):375–390

    Article  Google Scholar 

  11. Maraqa O, Rajasekaran AS, Al-Ahmadi S, Yanikomeroglu H, Sait SM (2020) A survey of rate-optimal power domain NOMA with enabling technologies of future wireless networks. IEEE Commun Surv Tutor 22(4):2192–2235

    Article  Google Scholar 

  12. Akbar A, Jangsher S, Bhatti FA (2021) NOMA and 5G emerging technologies: A survey on issues and solution techniques. Comput Netw 190:107950

    Article  Google Scholar 

  13. Kiani A, Ansari N (2018) Edge computing aware NOMA for 5G networks. IEEE Internet Things J 5(2):1299–1306

    Article  Google Scholar 

  14. Roostaei R, Dabiri Z, Movahedi Z (2021) A game-theoretic joint optimal pricing and resource allocation for Mobile Edge Computing in NOMA-based 5G networks and beyond. Comput Netw 198:108352

    Article  Google Scholar 

  15. Zhu J, Wang J, Huang Y, Fang F, Navaie K, Ding Z (2020) Resource allocation for hybrid NOMA MEC offloading. IEEE Trans Wirel Commun 19(7):4964–4977

    Article  Google Scholar 

  16. Hossain M, Ansari N (2022) Network slicing for NOMA-enabled edge computing. IEEE Trans Cloud Comput Early Access

  17. Liu L, Sun B, Tan X, Tsang D (2022) Energy-efficient resource allocation and subchannel assignment for NOMA-enabled multiaccess edge computing. IEEE Syst J 16(1):1558–1569

    Article  Google Scholar 

  18. Fang F, Xu Y, Ding Z, Shen C, Peng M, Karagiannidis GK (2020) Optimal resource allocation for delay minimization in NOMA-MEC Networks. IEEE Trans Commun 68(12):7867–7881

    Article  Google Scholar 

  19. Wang K, Ding Z, So DKC, Karagiannidis GK (2021) Stackelberg game of energy consumption and latency in MEC systems with NOMA. IEEE Trans Commun 69(4):2191–2206

    Article  Google Scholar 

  20. Shi L, Ye Y, Chu X, Lu G (2021) Computation energy efficiency maximization for a NOMA-based WPT-MEC network. IEEE Internet Things J 8(13):10731–10744

    Article  Google Scholar 

  21. Budhiraja I, Kumar N, Tyagi S, Tanwar S (2021) Energy consumption minimization scheme for NOMA-based mobile edge computation networks underlaying UAV. IEEE Syst J 15(4):5724–5733

    Article  Google Scholar 

  22. Qian L, Wu Y, Yu N, Jiang F (2021) Learning driven NOMA assisted vehicular edge computing via underlay spectrum sharing. IEEE Trans Veh Technol 70(1):977–992

    Article  Google Scholar 

  23. Li C, Wang H, Song R (2021) Intelligent offloading for NOMA-assisted MEC via dual connectivity. IEEE Internet Things J 8(4):2802–2813

    Article  Google Scholar 

  24. Liang Z, Liu Y, Lok T, Huang K (2021) Multi-cell mobile edge computing: Joint service migration and resource allocation. IEEE Trans Wirel Commun 20(9):5898–5912

    Article  Google Scholar 

  25. Guo F, Lu H, Li B, Li D, Chen CW (2021) NOMA-assisted multi-MEC offloading for IoVT networks. IEEE Wirel Commun 28(4):26–33

    Article  Google Scholar 

  26. Wan Z, Xu D, Xu D, Ahmad I (2021) Joint computation offloading and resource allocation for NOMA-based multi-access mobile edge computing systems. Comput Netw 196:108256

    Article  Google Scholar 

  27. Lai P, He Q, Cui G, Chen F (2022) Cost-effective user allocation in 5G NOMA-based mobile edge computing systems. IEEE Trans Mob Comput Early Access

  28. Yilmaz S, Özbek B (2022) Multi-helper NOMA for cooperative mobile edge computing. IEEE Trans Intell Transp Syst Early Access

  29. Fang F, Wang W, Ding Z, Leung VCM (2021) Energy-efficient resource allocation for NOMA-MEC networks with imperfect CSI. IEEE Trans Commun 69(5):3436–3449

    Article  Google Scholar 

  30. Yu H, Zhou Z, Jia Z, Zhao X (2021) Multi-timescale multi-dimension resource allocation for NOMA-edge computing-based power IoT with massive connectivity. IEEE Trans Green Commun Netw 5(3):1101–1113

    Article  Google Scholar 

  31. Chen X, Bi Y, Chen X, Zhao H (2022) Dynamic service migration and request routing for microservice in multi-cell mobile edge computing. IEEE Internet Things J Early Access

  32. Tuong VD, Truong TP, Nguyen T, Noh W, Cho S (2021) Partial computation offloading in NOMA-assisted mobile-edge computing systems using deep reinforcement learning. IEEE Internet Things J 8(17):13196–13208

    Article  Google Scholar 

  33. Chen Z, Zhang L, Pei Y, Jiang C (2022) NOMA-based multi-user mobile edge computation offloading via cooperative multi-agent deep reinforcement learning. IEEE Trans Cognit Commun Netw 8(1):350–364

    Article  Google Scholar 

  34. Zhu H, Wu Q, Wu X, Fan Q (2021) Decentralized power allocation for MIMO-NOMA vehicular edge computing based on deep reinforcement learning. IEEE Internet Things J Early Access

  35. Nduwayezu M, Yun J (2022) Latency and energy aware rate maximization in MC-NOMA-based multi-access edge computing: A two-stage deep reinforcement learning approach. Comput Netw 207:108834

    Article  Google Scholar 

  36. Wang K, Zhou Y, Liu Z, Shao Z, Luo X, Yang Y (2020) Online task scheduling and resource allocation for intelligent NOMA-based industrial Internet of Things. IEEE J Sel Areas Commun 38(5):803–815

    Article  Google Scholar 

  37. Tuong VD, Noh W, Cho S (2021) Delay minimization for NOMA-enabled mobile edge computing in industrial Internet of Things. IEEE Trans Ind Inf Early Access 1–10

  38. Qian L, Wu Y, Jiang F, Yu N, Lu W, Lin B (2021) NOMA assisted multi-task multi-access mobile edge computing via deep reinforcement learning for industrial Internet of Things. IEEE Trans Industr Inf 17(8):5688–5698

    Article  Google Scholar 

  39. Peng H, Shen X (2020) Deep reinforcement learning based resource management for multi-access edge computing in vehicular networks. IEEE Trans Netw Sci Eng 7(4):2416–2428

    Article  MathSciNet  Google Scholar 

  40. Tang M, Wong V (2020) Deep reinforcement learning for task offloading in mobile edge computing systems. IEEE Tran Mob Comput Early Access 1–12

  41. Ning Z, Huang J, Wang X, Rodrigues J, Guo L (2019) Mobile edge computing-enabled internet of vehicles: Toward energy-efficient scheduling. IEEE Network 33(5):198–205

    Article  Google Scholar 

  42. Liang F, Yu W, Liu X, Griffith D, Golmie N (2021) Toward computing resource reservation scheduling in industrial Internet of Things. IEEE Internet Things J 8(10):8210–8222

    Article  Google Scholar 

  43. Baek J, Kaddoum G (2021) Heterogeneous task offloading and resource allocations via deep recurrent reinforcement learning in partial observable multifog networks. IEEE Internet Things J 8(2):1041–1056

    Article  Google Scholar 

  44. Kapetanakis S, Kudenko D (2002) Reinforcement learning of coordination in cooperative multi-agent systems. Proc Natl Conf Artif Intell Conf Innov Appl Artif Intell (AAAI/IAAI), Menlo Park, CA, USA, pp:326–331

  45. Wang S, Lv T, Zhang X, Lin Z, Huang P (2020) Learning-based multi-channel access in 5G and beyond networks with fast time-varying channels. IEEE Trans Veh Technol 69(5):5203–5218

    Article  Google Scholar 

  46. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural. Computing 9(8):1735–1780

    Google Scholar 

  47. Mnih V, Kavukcuoglu K, Silver D, Rusu A, Veness J, Bellemare M (2015) Human-level control through deep reinforcement learning. Nature 518:529–533

    Article  Google Scholar 

  48. Lyu X, Tian H, Jiang L, Vinel A, Maharjan S, Gjessing S, Zhang Y (2018) Selective offloading in mobile edge computing for the green Internet of Things. IEEE Network 32(1):54–60

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant: 62,171,051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen’an Zhou.

Ethics declarations

Competing interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Zhou, W., Yang, Z. et al. Deep reinforcement learning-based task scheduling and resource allocation for NOMA-MEC in Industrial Internet of Things. Peer-to-Peer Netw. Appl. 16, 170–188 (2023). https://doi.org/10.1007/s12083-022-01348-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-022-01348-x

Keywords

Navigation