Skip to main content
Log in

Scale-free networks: evolutionary acceleration of the network survivability and its quantification

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

This study proposes a concept and quantitative method of the evolutionary acceleration of survivability for scale-free networks. The basic idea is as follows: first, we integrate the network metrics by a kernel principal component analysis to remove the non-linear correlation among them. We then present the analytical expressions for the evolutionary acceleration of network survivability and its variable angle, which provides a new perspective on how scale-free networks have evolved. Lastly, we investigate the evolution of survivability by the real data of a product co-purchase network to validate the quantitative method. Results reveal that robustness and vulnerability don’t always evolve at the same rate. This quantitative method in this study can also be extended to the other scale-free networks, which may help gain insight into the evolutionary process of a system and predict their growth or decline, and advance research on complex networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The product co-purchase network data supporting the findings of this study are available from Stanford Large Network Dataset Collection, http://snap.stanford.edu/data/amazon0302.html.

Code Availability statement

All the code used can be provided with the article, which allows the reproducibility of the results reported in our study.

References

  1. Callaway DS, Newman MEJ, Strogatz SH, Watts DJ (2000) Network robustness and fragility: Percolation on random graphs. Phys Rev Lett 5468–5471

  2. Artico I, Smolyarenko I, Vinciotti V, Wit EC (2020) How rare are power-law networks really? Proc R Soc A-Math Phys Eng Sci 476(2241):20190742

    Article  MathSciNet  Google Scholar 

  3. Ellison RJ, Fisher DA, Linger RC, Lipson HF, Longstaff TA, Mead NR (1999) Survivability: Protecting your critical systems. IEEE Internet Comput 3(6):55–63

    Article  Google Scholar 

  4. Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  Google Scholar 

  5. Gallos LK, Argyrakis P (2007) Scale-free networks resistant to intentional attacks. EPL 80(5):58002

    Article  Google Scholar 

  6. Mishkovski I (2014) Hierarchy and vulnerability of complex networks. ICT Innovations 273–281

  7. Grubesic TH, Matisziw TC, Murray AT, Snediker D (2008) Comparative approaches for assessing network vulnerability. Int Reg Sci Rev 31(1):88–112

    Article  Google Scholar 

  8. Nasirian F, Mahdavi Pajouh F, Balasundaram B (2020) Detecting a most closeness-central clique in complex networks. Eur J Oper Res 283(2):461–475

    Article  MathSciNet  Google Scholar 

  9. Gao J, Barzel B, Barabási A-L (2016) Universal resilience patterns in complex networks. Nature 530(7590):307–312

    Article  Google Scholar 

  10. Sathishkumar M, Liu YC (2020) Resilient event-triggered fault-tolerant control for networked control systems with randomly occurring nonlinearities and DOS attacks. Int J Syst Sci 51(14):2712–2732

    Article  MathSciNet  Google Scholar 

  11. Pan X, Wang H (2018) Resilience of and recovery strategies for weighted networks. PLoS One 13(9)

  12. Fu G, Wilkinson S, Dawson RJ, Fowler HJ, Kilsby C, Panteli M, Mancarella P (2018) Integrated approach to assess the resilience of future electricity infrastructure networks to climate hazards. IEEE Syst J 12(4):3169–3180

    Article  Google Scholar 

  13. Lin Z, Feng M, Tang M, Liu Z, Xu C, Hui PM, Lai Y (2020) Non-markovian recovery makes complex networks more resilient against large-scale failures. Nat Commun 11:2490

    Article  Google Scholar 

  14. Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464(7291):1025–1028

    Article  Google Scholar 

  15. Gong M, Ma L, Cai Q, Jiao L (2015) Enhancing robustness of coupled networks under targeted recoveries. Sci Rep 5:8439

    Article  Google Scholar 

  16. Ma J, Ju Z (2019) Cascading failure model of scale-free networks for avoiding edge failure. Peer Peer Netw Appl 12(6):1627–1637

    Article  Google Scholar 

  17. Witthaut D, Timme M (2015) Nonlocal effects and countermeasures in cascading failures. Phys Rev E 92(3):032809

    Article  Google Scholar 

  18. Kaiser F, Latora V, Witthaut D (2021) Network isolators inhibit failure spreading in complex networks. Nat Commun 12:3143

    Article  Google Scholar 

  19. Cui Y, Shi J, Wang Z (2018) Backward Reconfiguration Management for Modular Avionic Reconfigurable Systems. IEEE Syst J 12:137–148

    Article  Google Scholar 

  20. El-Mougy A, Ibnkahla M, Hattab G, Ejaz W (2015) Reconfigurable Wireless Networks. Peer Peer Netw Appl 103(7):1125–1158

    Google Scholar 

  21. Wang N, Wu N, Dong LL, Yan HK, Wu D (2016) A study of the temporal robustness of the growing global container-shipping network. Sci Rep 6:34217

  22. Huertas Celdrán A, Karmakar KK, Gómez Mármol F, Varadharajan V (2021) Detecting and mitigating cyberattacks using software defined networks for Integrated Clinical Environments. Peer Peer Netw Appl 14(5):2719–2734

    Article  Google Scholar 

  23. Vespignani A (2010) The fragility of interdependency. Nature 464(7291):984–985

    Article  Google Scholar 

  24. Du X (2012) Toward time-dependent robustness metrics. J Mech Des 134:011004

    Article  Google Scholar 

  25. Huang W, Wang J (2016) The Shortest Path Problem on a Time-Dependent Network with Mixed Uncertainty of Randomness and Fuzziness. IEEE Trans Intell Transp Syst 17(11):3194–3204

    Article  Google Scholar 

  26. Yu A, Wang N, Wu N (2021) Scale-free networks: Characteristics of the time-variant robustness and vulnerability. IEEE Syst J 15(3):4082–4092

    Article  Google Scholar 

  27. Clauset A, Shalizi CR, Newman ME (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Article  MathSciNet  Google Scholar 

  28. Ngo S-C, Percus AG, Burghardt K, Lerman K (2020) The transsortative structure of networks. Proc R Soc A-Math Phys Eng Sci 476(2237):20190772

    Article  MathSciNet  Google Scholar 

  29. Boccalettia S, Latorab V, Morenod Y, Chavez M, Hwang D (2006) Complex networks: Structure and dynamics. Phys Rep 424(4–5):175–308

  30. Costa LDF, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: A survey of measurements. Adv Phys 56(1):167–242

  31. Schölkopf B, Smola A, Müller K-R (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10(5):1299–1319

    Article  Google Scholar 

  32. Choi SW, Lee C, Lee J-M, Park JH, Lee I-B (2005) Fault detection and identification of nonlinear processes based on kernel PCA. Chemometrics Intell Lab Syst 75(1):55–67

    Article  Google Scholar 

  33. Lee J-M, Yoo CK, Choi SW, Vanrolleghem PA, Lee I-B (2004) Nonlinear process monitoring using kernel principal component analysis. Chem Eng Sci 59(1):223–234

    Article  Google Scholar 

  34. Rosipal R, Girolami M, Trejo LJ, Cichocki A (2001) Kernel PCA for feature extraction and de-noising in nonlinear regression. Neural Comput Appl 10(3):231–243

    Article  Google Scholar 

  35. Cho J-H, Lee J-M, Wook Choi S, Lee D, Lee I-B (2005) Fault identification for process monitoring using kernel principal component analysis. Chem Eng Sci 60(1):279–288

    Article  Google Scholar 

  36. Leskovec J, Adamic LA, Huberman BA (2007) The dynamics of viral marketing. ACM Transactions on the Web

  37. Vitoropoulou M, Karyotis V, Papavassiliou S (2018) Sensing and monitoring of information diffusion in complex online social networks. Peer Peer Netw Appl 12(3):604–619

    Article  Google Scholar 

  38. Manzano M, Sahneh F, Scoglio C, Calle E, Marzo JL (2014) Robustness surfaces of complex networks. Sci Rep 4:6133

    Article  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuo Wang.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, A., Wang, N. Scale-free networks: evolutionary acceleration of the network survivability and its quantification. Peer-to-Peer Netw. Appl. 15, 2227–2239 (2022). https://doi.org/10.1007/s12083-022-01339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-022-01339-y

Keywords

Navigation