Skip to main content

Advertisement

Log in

Classify four imagined objects with EEG signals

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

EEG signals contain information directly related to cognitive activity. This paper presents a method to classify the images a person imagines via the information provided by the EEG signals. The images relating to the objects ‘tree’, ‘house’, ‘plane’ and ‘dog’ have been reconstructed. We have used a convolutional neural networks to obtain the reconstruction of the images and a genetic algorithm to find the parameters of this network. The results obtained have been evaluated by means of a Chebychev metric to compare the images, and it shows that the reconstruction is performed with a success of 57% over chance, with an accuracy in the classification of 60% and a kappa value of 0.40, demonstrating that the classification of five mental states where four of them come from the visual imagery, is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Costa A, Hortal E, Iánez E, Azorín JM (2014) A supplementary system for a brain-machine interface based on jaw artifacts for the bidimensional control of a robotic arm. PLoS One. https://doi.org/10.1371/journal.pone.0112352

    Article  Google Scholar 

  2. Costa A, Beda A, Iánez E, Azorín JM (2014) Control of a 2 DoF robot using a brain-machine interface. Comput Methods Programs Biomed. https://doi.org/10.1016/j.cmpb.2014.02.018

    Article  Google Scholar 

  3. Cincotti F, Mattia D, Aloise F, Bufalari S, Schalk G, Oriolo G et al (2008) Non-invasive brain-computer interface system: Towards its application as assistive technology. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2008.01.007

    Article  Google Scholar 

  4. Mak JN, Wolpaw JR (2009) Clinical applications of brain-computer interfaces: current state and future prospects. IEEE Rev Biomed Eng. https://doi.org/10.1109/RBME.2009.2035356

    Article  Google Scholar 

  5. Müller-Putz GR, Scherer R, Pfurtscheller G, Rupp R (2005) EEG-based neuroprosthesis control: A step towards clinical practice. Neurosci Lett. https://doi.org/10.1016/j.neulet.2005.03.021

    Article  Google Scholar 

  6. Lecuyer A, Lotte F, Reilly R (2008) Brain-computer interfaces, virtual reality and videogames IEEE computer. IEEE Comput. https://doi.org/10.1109/MC.2008.410

    Article  Google Scholar 

  7. Gunther FH, Brumberg JS, Wright EJ, Nieto-Catanon A, Tourville JA (2009) A wireless brain-machine interface for real-time speech synthesis. PLoS One. https://doi.org/10.1371/journal.pone.0008218

    Article  Google Scholar 

  8. Keih SC, Gottschalt L, Teichlein E, Weilbach FX (2016) Toward a P300 based brain-computer interface for aphasia rehabilitation after Stroke: lot feasibility study. Front Human Neurosci. https://doi.org/10.3389/fnhum.2016.00547

    Article  Google Scholar 

  9. Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol. https://doi.org/10.1016/S0013-4694(97)00080-1

    Article  Google Scholar 

  10. Wolpaw JR, McFarland DJ (1991) An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol. https://doi.org/10.1016/0013-4694(91)90040-B

    Article  Google Scholar 

  11. Trejo LJ, Rosipal R, Matthews B (2006) Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Eng Med Biol Soci. https://doi.org/10.1109/TNSRE.2006.875578

    Article  Google Scholar 

  12. Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans Rehabil Eng 10(1109/86):847808. https://doi.org/10.1109/86.847808

    Google Scholar 

  13. Fabiani M, Gratton G, Karis D, Donchin E (1987) Definition, identification, and reliability of the P300 component of the event-related brain potential. Adv Psychophysiol 2:1–78

    Google Scholar 

  14. Nijboer F, Sellers EW, Mellinger J, Jordan AM, Matuz T, Furdea A et al (2008) A P300-based brain-computer interface for people with amyotrophic lateral sclerosis. Clin Neurophysiol. https://doi.org/10.1016/j.clinph.2008.03.034

    Article  Google Scholar 

  15. Ortner R, Allison BZ, Korisek G, Gaggl H, Pfurtscheller G (2011) An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng. https://doi.org/10.1109/TNSRE.2010.2076364

    Article  Google Scholar 

  16. Kosmyna N, Lindgren JT, Lécuyer A (2018) Attending to visual stimuli versus performing visual imagery as a control strategy for EEG-based brain-computer interfaces. Sci Rep. https://doi.org/10.1038/s41598-018-31472-9

    Article  Google Scholar 

  17. Nemrodov D, Niemeier M, Patel A, Nestor A (2018) The neural dynamics of facial identity processing: insights from EEG-based pattern analysis and image reconstruction. ENeuro. https://doi.org/10.1523/ENEURO.0358-17.2018

    Article  Google Scholar 

  18. Bobrov P, Frolov A, Cantor C, Fedulova I, Bakhnyan M, Zhavoronkov A (2011) Brain-computer interface based on generation of visual images. PLoS One. https://doi.org/10.1371/journal.pone.0020674

    Article  Google Scholar 

  19. Esfahani ET, Sundararajan V (2012) Classification of primitive shapes using brain computer interfaces. Comput Aided Des. https://doi.org/10.1016/j.cad.2011.04.008

    Article  Google Scholar 

  20. Knauff M, Kassubek J, Mulack T, Greenle MW (2000) Cortical activation evoked by visual mental imagery as measured by functional MRI. Neuroreport. https://doi.org/10.1097/00001756-200012180-00011

    Article  Google Scholar 

  21. Guohua S, Horikawa T, Majima K, Kamitani Y (2019) Deep image reconstruction from human brain activity. PLoS Comput Biol. https://doi.org/10.1371/journal.pcbi.1006633

    Article  Google Scholar 

  22. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  Google Scholar 

  23. Chollet F et al (2015) Keras. GitHub. Retrieved from http://github.com/fchollet/keras

  24. Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V et al (2010) OpenViBE: An open-source software platform to design, test and use brain-computer interfaces in real and virtual environments. Presence Teleoperators Virtual Environ. https://doi.org/10.1162/pres.19.1.35

    Article  Google Scholar 

  25. Syahrull H, Lakany H, Ahmad RB, Bernard A, Conway (2017) Comparing common average referencing to laplacian referencing in detecing imagination and intention of movement for brain computer interface. In: MATEC Web of Conferences. https://doi.org/10.1051/matecconf/201714001028

  26. Krizhevsky A, Sutskever I, Hinton, Geoffrey E (2012) ImageNet classification with deep convolutional neural networks. In: NIPS’12 Proceedings of the 25th international conference on neural information processing systems

  27. Howard A, Menglong Z, Chen B, Kalenichenko D, Wang W, Weyand T et al (2017) MobileNets: efficient convolutional neural networks for mobile vision applications. Comput Vision Pattern Recognit. arXiv: 1704.04861v1

  28. Hu M (2015) Convolutional neural network for object recognition. In: 2016 23rd international conference on pattern recognition (ICPR) https://doi.org/10.1109/ICPR.2016.7900181

  29. Guo T, Dong J, Li H, Gao Y (2017) Simple convolutional neural network on image classification. In: 2017 IEEE 2nd international conference on big data analysis (ICBDA). https://doi.org/10.1109/ICBDA.2017.8078730

  30. Cecotti H, Graser A (2011) Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2010.125

    Article  Google Scholar 

  31. Schirrmeister R, Springenberg J, Fiederer L, Glasstetter M, Eggensperger K, Tangermann M et al (2017) Deep learning with convolutionalneural networks for EEG decoding and visualization. Neural Evolut Comput. https://doi.org/10.1002/hbm.23730

    Article  Google Scholar 

  32. Cecotti H, Graeser A (2008) Convolutional Neural Network with embedded Fourier Transform for EEG classification. In: 2008 19th international conference on pattern recognition. https://doi.org/10.1109/ICPR.2008.4761638

  33. Kavasidis I, Palazzo S, Spampinato C, Giordano D, Shah M (2017). Brain2Image: Converting Brain Signals into Images. In: ACM Multimedia 2017. https://doi.org/10.1145/3123266.3127907

  34. Mahaja R, Kaur G (2013) Neural networks using genetic algorithms. Int J Comput Appl 77(14)

  35. Miller G, Todd P (1989) Hegde S. Designing Neural Networks using Genetic Algorithms. In: Proceedings of the 3rd international conference on genetic algorithms

  36. Kim H, Shin K (2007) A hybrid approach based on neural networks andgenetic algorithms for detecting temporal patterns in stock markets. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2006.03.004

    Article  Google Scholar 

  37. Schlgl A, Lee F, Bischof H, Pfurtschelle G (2005) Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neuralal Eng. https://doi.org/10.1088/1741-2560/2/4/L02

    Article  Google Scholar 

  38. Friedrich E, Scherer R, Neuper C (2012) The effect of distinct mental strategies on classification performance for brain computer interfaces. Int J Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2012.01.014

    Article  Google Scholar 

  39. Wang L, Zhang Y, Feng J (2005) On the Euclidean distance of images. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2005.165

    Article  Google Scholar 

  40. Chen C, Chu H (2005) Similarity measurement between images. In: 29th Annual International Computer Software and Applications Conference (COMPSAC’05). https://doi.org/10.1109/COMPSAC.2005.140

  41. Müller-Putz G, Scherer R, Brunner C, Leeb R, Pfurtscheller G (2008) Better than random: a closer look on BCI results. Int J Bioelectromagn 10:52–55

    Google Scholar 

  42. Horikawa T, Kamitani Y (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nat Commun. https://doi.org/10.1038/ncomms15037

    Article  Google Scholar 

Download references

Acknowledgements

Thank all the people who have volunteered to make the EEG signals registers, without them this work would not have been possible. This work was partially funded by the project TIN2017-88515-C2-2-R from Ministerio de Ciencia, Innovación y Universidades, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio R. Llorella Costa.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, F.R.L., Iáñez, E., Azorín, J.M. et al. Classify four imagined objects with EEG signals. Evol. Intel. 15, 1657–1666 (2022). https://doi.org/10.1007/s12065-021-00577-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00577-y

Keywords

Navigation