Skip to main content

Advertisement

Log in

Heating requirements in greenhouse farming in southern Italy: evaluation of ground-source heat pump utilization compared to traditional heating systems

  • Original Article
  • Published:
Energy Efficiency Aims and scope Submit manuscript

Abstract

Greenhouse farming, where energy consumptions are mainly related to the greenhouses heating, is one of the sectors consuming the most energy in the agricultural industry. High costs and the uncertain availability of fossil fuels constrain the use of heating applications. Among possible solutions, the utilization of renewable heating systems such as geothermal energy through ground-source heat pump systems (GSHPs) at competitive prices has to be taken in consideration. The competitiveness of these systems depends mainly on the characteristics of the end-users, i.e., the annual heating loads. Few studies focusing on the potential of using these systems start with an analysis of the thermal requirements and end with a cost evaluation in tune with local assets, geo-climatic conditions, and landscape protection. This paper analyzes the greenhouse crop industry in the Apulia region in southern Italy, as a potential end-user of GSHP systems. Data collected from an area mainly devoted to greenhouse crop production have been used to (a) describe greenhouse farms, (b) define the heating requirements of a greenhouse model representative of the most used typology in the investigated area, and (c) examine the economic viability of greenhouse heating with GSHP systems. Both vertical and horizontal ground heat exchanger (GHE) configurations are compared with conventional fossil-fuel heating systems. In all scenarios considered, the observed payback periods appear reasonable and worthy of consideration. The results suggest that these technologies can fully satisfy the winter heating requirements in a cost-effective way and they can support the planning of measures aimed to improve the sector competitiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Apulian Regional Consortia for Plant Protection (ASSOCODIPUGLIA) established by Regional Law no. 24 11 May 1990 combines the Consortia of defense of the five provinces of Apulia, legally constituted and recognized in accordance with the national and regional laws. The association provides technical support in the agricultural field, carrying out essential activities for sustainable agricultural management, as well as representation and coordination activities, supporting and protecting its members at regional, national, and European level.

Abbreviations

A c :

Total area of the cover [m2]

A b :

Greenhouse floor area [m2]

ρ α :

Air density [kg/m3]

C p :

Air specific heat capacity [kJ/kg °C]

I :

Solar radiation on the horizontal surface [W/m2]

N αc :

Estimated number of air change per hour [1/h]

Q sys :

Total heat power to ensure the desired inside temperature of the greenhouse [W]

Q k :

Heat loss from the greenhouse [W]

Q s :

Solar radiation inside the greenhouse [W]

Q cci :

Heat loss through the cover material [W]

Q i :

Heat loss for infiltration [W]

T i :

Inside greenhouse temperature [°C]

T e :

Outside greenhouse temperature [°C]

V :

Greenhouse volume [m3]

τ :

Transmissivity of the greenhouse cover

K r :

Overall heat transmission coefficient in the greenhouse [W/m2 °C]

References

  • Abdel-Ghany, A. M., & Kozai, T. (2006). On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: analysis of radiation and convection heat transfer. Energy Conversion and Management, 47(15–16), 2612–2628. doi:10.1016/j.enconman.2005.10.024.

    Article  Google Scholar 

  • Adaro, J. A., Galimberti, P. D., Lema, A. I., Fasulo, A., & Barral, J. R. (1999). Geothermal contribution to greenhouse heating. Applied Energy, 64(1–4), 241–249. doi:10.1016/S0306-2619(99)00049-5.

    Article  Google Scholar 

  • AEEG (2014). Autorità per l’energia elettrica, il gas ed il sistema idrico (AEGG). Web site of the Italian electricity authority. URL: http://www.autorita.energia.it/it/elettricita/prezzirif.htm [Accessed on 25 May 2014].

  • Al-Helal, I. M., & Alhamdan, A. M. (2009). Effect of arid environment on radiative properties of greenhouse polyethylene cover. Solar Energy, 83(6), 790–798. doi:10.1016/j.solener.2008.11.008.

    Article  Google Scholar 

  • Aramyan, L. H., Lansink, A. G. J. M. O., & Verstegen, J. A. A. M. (2007). Factors underlying the investment decision in energy-saving systems in Dutch horticulture. Agricultural Systems, 94(2), 520–527. doi:10.1016/j.agsy.2007.01.005.

    Article  Google Scholar 

  • ARIAP (2013). Listino dei prezzi delle opere edili. Associazione regionale ingegneri ed architetti di Puglia (ARIAP). URL: http://www.ariap.it/index.php?module=bollettino&menu=pubblicazioni&id

  • ASHRAE (1999). ASHRAE handbook, HVAC application. American Society of Heating Refrigeration and Air-Conditioning Engineers (ASHRAE).

  • Assocodipuglia (2013). Associazione Consorzi di Difesa Regione Puglia (ASSOCODIPUGLIA). URL: http://www.agrometeopuglia.it/opencms/opencms/Agrometeo/home_agro [Last accessed 16 May 2014].

  • Aye, L., Fuller, R. J. J., & Canal, A. (2010). Evaluation of a heat pump system for greenhouse heating. International Journal of Thermal Sciences, 49(1), 202–208. doi:10.1016/j.ijthermalsci.2009.07.002.

    Article  Google Scholar 

  • Bailey, B. J. (1989). Principles of environmental control. In C. von Zabeltitz (Ed.), Energy conservation and renewable energies for greenhouse heating. REUR Technical Series 3 (pp. 17–41). Roma: FAO, ENEA.

    Google Scholar 

  • Balbay, A., & Esen, M. (2010). Experimental investigation of using ground source heat pump system for snow melting on pavements and bridge decks. Scientific Research and Essays, 5(24), 3955–3966.

    Google Scholar 

  • Balbay, A., & Esen, M. (2013). Temperature distributions in pavement and bridge slabs heated by using vertical ground-source heat pump systems. Acta Scientiarum Technology, 35, 677–685. doi:10.4025/actascitechnol.v35i4.15712.

    Google Scholar 

  • Benli, H. (2011). Energetic performance analysis of a ground-source heat pump system with latent heat storage for a greenhouse heating. Energy Conversion and Management, 52(1), 581–589. doi:10.1016/j.enconman.2010.07.033.

    Article  Google Scholar 

  • Benli, H. (2013). A performance comparison between a horizontal source and a vertical source heat pump systems for a greenhouse heating in the mild climate Elaziğ, Turkey. Applied Thermal Engineering, 50(1), 197–206. doi:10.1016/j.applthermaleng.2012.06.005.

    Article  MathSciNet  Google Scholar 

  • Benli, H., & Durmuş, A. (2009). Evaluation of ground-source heat pump combined latent heat storage system performance in greenhouse heating. Energy and Buildings, 41(2), 220–228. doi:10.1016/j.enbuild.2008.09.004.

    Article  Google Scholar 

  • Bentounes, N., Jaffrin, A., Dalichamp, B., & Urban, L. (1999). Depollution of landfill biogas for greenhouse applications. Acta Horticulturae, 534, 117–124.

    Google Scholar 

  • Berroug, F., Lakhal, E. K., Omari, M., Faraji, M., & Qarnia, H. (2011). Numerical study of greenhouse nocturnal heat losses. Journal of Thermal Science, 20(4), 377–384. doi:10.1007/s11630-011-0484-3.

    Article  Google Scholar 

  • Blum, P., Campillo, G., Münch, W., & Kölbel, T. (2010). CO2 savings of ground source heat pump systems—a regional analysis. Renewable Energy, 35(1), 122–127. doi:10.1016/j.renene.2009.03.034.

    Article  Google Scholar 

  • Buonasorte, G., Rizzi, F., & Passaleva, G. (2010). Direct uses of geothermal energy in Italy 2005-2009 : update report and perspectives. In Proceedings of the 2010 World Geothermal Congress (Vol. 2006, pp. 25–29). Bali Indonesia.

  • Campiotti, C. A. (2001). Geothermal energy as sustainable application for greenhouse heating in rural areas and agriculture. In IGA - International Summer School (pp. 139–145).

  • Campiotti, C. A., Bibbiani, C., Dondi, F., Scoccianti, M., & Viola, C. (2011a). Energy efficiency and photovoltaic solar for greenhouse agriculture. Journal of Sustainable Energy, 2, 51–56.

    Google Scholar 

  • Campiotti, C. A., Dondi, F., Di Carlo, F., Scoccianti, M., Alonzo, G., Bibbiani, C., & Incrocci, L. (2011b). Preliminary results of a PV closed greenhouse system for high irradiation zone in south Italy. Acta Horticulturae, 893, 243–250.

    Article  Google Scholar 

  • Campiotti, C. A., Viola, C., Scoccianti, M., Giagnacovo, G., & Lucerti, G. (2011a). Le Filiere del Sistema Agricolo per l’Energia e l’Efficienza Energetica. Roma. http://www.enea.it/it/produzione-scientifica/rapporti-tecnici.

  • Campiotti, C. A., Viola, C., Alonzo, G., Bibbiani, C., Giagnacovo, G., Scoccianti, M., & Tumminelli, G. (2012). Sustainable greenhouse horticolture in europe. Journal of Sustainable Energy, 3(3), 159–163.

    Google Scholar 

  • Canakci, M., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8–9), 1243–1256. doi:10.1016/j.energy.2005.05.021.

    Article  Google Scholar 

  • Canakci, M., Yasemin Emekli, N., Bilgin, S., Caglayan, N., & Emekli, N. Y. (2013). Heating requirement and its costs in greenhouse structures: a case study for Mediterranean region of Turkey. Renewable and Sustainable Energy Reviews, 24, 483–490. doi:10.1016/j.rser.2013.03.026.

    Article  Google Scholar 

  • Carella, R., & Sommaruga, C. (2000). Geothermal space and agribusiness heating in italty (pp. 117–122). Kyushu Tohoku: Proceedings of the 2000 World Geothermal Congress.

    Google Scholar 

  • Cellura, M., Ardente, F., & Longo, S. (2012). From the LCA of food products to the environmental assessment of protected crops districts: a case-study in the south of Italy. Journal of Environmental Management, 93, 194–208.

    Article  Google Scholar 

  • Chai, L., Ma, C., & Ni, J.-Q. (2012). Performance evaluation of ground source heat pump system for greenhouse heating in northern China. Biosystems Engineering, 111(1), 107–117. doi:10.1016/j.biosystemseng.2011.11.002.

    Article  Google Scholar 

  • Chau, J., Sowlati, T., Sokhansanj, S., Preto, F., Melin, S., & Bi, X. (2009). Techno-economic analysis of wood biomass boilers for the greenhouse industry. Applied Energy, 86(3), 364–371. doi:10.1016/j.apenergy.2008.05.010.

    Article  Google Scholar 

  • Chiabrando, R., & Fabrizio, E. (2009). La sostenibilità energetica delle costruzioni: criteri progettuali e strumenti di verifica (pp. 12–16). Ischia Porto: Proceedings of the IX Convegno Nazionale dell’Associazione Italiana di Ingeneria Agraria.

    Google Scholar 

  • Chou, S. K., Chua, K. J., Ho, J. C., & Ooi, C. L. (2004). On the study of an energy-efficient greenhouse for heating, cooling and dehumidification applications. Applied Energy, 77(4), 355–373. doi:10.1016/S0306-2619(03)00157-0.

    Article  Google Scholar 

  • Colangelo, G., Romano, D., De Risi, A., Starace, G., & Laforgia, D. (2012). Un tool in Matlab-Simulink per la simulazione di pompe di calore geotermiche Tecnica. La Termotecnica, 3(1), 63.72.

    Google Scholar 

  • Congedo, P. M., Colangelo, G., & Starace, G. (2012). CFD simulations of horizontal ground heat exchangers: a comparison among different configurations. Applied Thermal Engineering, 33–34, 24–32. doi:10.1016/j.applthermaleng.2011.09.005.

    Article  Google Scholar 

  • Criddle, R. S., Smith, B. N., & Hansen, L. D. (1997). A respiration based description of plant growth rate responses to temperature. Planta, 201(4), 441–445. doi:10.1007/s004250050087.

    Article  Google Scholar 

  • Elsner, B. Von, Briassoulis, D., Waaijenberg, D., Mistriotis, A, Zabeltitz, C. Von, & Gratraud, J. (2000). Review of structural and functional characteristics of greenhouses in European Union countries: Part I, Design Requirements, 1–16.

  • Esen, M., & Yuksel, T. (2013). Experimental evaluation of using various renewable energy sources for heating a greenhouse. Energy and Buildings, 65, 340–351. doi:10.1016/j.enbuild.2013.06.018.

    Article  Google Scholar 

  • Esen, H., Inalli, M., & Esen, M. (2006). Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey. Energy Conversion and Management, 47, 1281–1297. doi:10.1016/j.enconman.2005.06.024.

    Article  Google Scholar 

  • Esen, H., Inalli, M., & Esen, M. (2007a). A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling. Building and Environment, 42, 1955–1965. doi:10.1016/j.buildenv.2006.04.007.

    Article  Google Scholar 

  • Esen, H., Inalli, M., Esen, M., & Pihtili, K. (2007b). Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers. Building and Environment, 42(10), 3606–3615. doi:10.1016/j.buildenv.2006.10.014.

    Article  Google Scholar 

  • European Commission (EC), Directorate-General Agriculture and Rural Development (2006). SCENAR 2020, Scenario study on agriculture and the rural world. URL: http://ec.europa.eu/agriculture/agrista/2006/scenar2020/final_report/scenar2020final.pdf [accessed 25 March 2014].

  • European Commission (EC), Directorate-General for Agriculture and Rural Development (2011). Agriculture in the EU Statistical and Economic Information. URL: http://ec.europa.eu/agriculture/agrista/2010/table_en/2010enfinal.pdf [accessed 25 March 2014].

  • Fabrizio, E. (2012). Energy reduction measures in agricultural greenhouses heating: envelope, systems and solar energy collection. Energy and Buildings, 53, 57–63. doi:10.1016/j.enbuild.2012.07.003.

    Article  Google Scholar 

  • Faehnrich, I., Meyer, J., & von Zabeltitz, C. (1989). Infuence of condensation on light transmission and heat transfer through greenhouse covering materials. Plasticulture, 84(4), 13–18.

    Google Scholar 

  • Florides, G., & Kalogirou, S. (2007). Ground heat exchangers—a review of systems, models and applications. Renewable Energy, 32(15), 2461–2478. doi:10.1016/j.renene.2006.12.014.

    Article  Google Scholar 

  • Ghosal, M. K., & Tiwari, G. N. (2004). Mathematical modeling for greenhouse heating by using thermal curtain and geothermal energy. Solar Energy, 76, 603–613. doi:10.1016/j.solener.2003.12.004.

    Article  Google Scholar 

  • Hamer, P. J. C., Bailey, B. J., Virk, G. S., & Ford, M. G. (2006). Novel methods of heating and cooling greenhouses: a feasibility study. In B. J. Bailey (Ed.), Acta Horticulturae (Vol. 719, pp. 223–230). http://www.scopus.com/inward/record.url?eid=2-s2.0-37849186046&partnerID=40&md5=a9aed4e8185e547bd45fa24c6241a3ca.

  • Hanova, J., & Dowlatabadi, H. (2007). Strategic GHG reduction through the use of ground source heat pump technology. Environmental Research Letters, 2(4), 8 pp. doi:10.1088/1748-9326/2/4/044001.

  • Hansen, L. D., Afzal, M., Breidenbach, R. W., & Criddle, R. S. (1994). High- and low-temperature limits to growth of tomato cells. Planta, 195(1), 1–9. doi:10.1007/BF00206284.

    Article  Google Scholar 

  • Hedau, N. K., Tuti, M. D., Stanley, J., Mina, B. L., Agrawal, P. K., Bisht, J. K., & Bhatt, J. C. (2013). Energy-use efficiency and economic analysis of vegetable cropping sequences under greenhouse condition. Energy Efficiency, 7(3), 507–515. doi:10.1007/s12053-013-9239-1.

    Article  Google Scholar 

  • Heidari, M. D., & Omid, M. (2011). Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy, 36(1), 220–225. doi:10.1016/j.energy.2010.10.048.

    Article  Google Scholar 

  • Hepbasli, A. (2011). A comparative investigation of various greenhouse heating options using exergy analysis method. Applied Energy, 88(12), 4411–4423. doi:10.1016/j.apenergy.2011.05.022.

    Article  Google Scholar 

  • Impron, I., Hemming, S., & Bot, G. P. A. (2007). Simple greenhouse climate model as a design tool for greenhouses in tropical lowland. Biosystems Engineering, 98(1), 79–89. doi:10.1016/j.biosystemseng.2007.03.028.

    Article  Google Scholar 

  • Istituto Nazionale di Statistica, ISTAT (2010). 6° Censimento generale dell’agricoltura 2010 (6th Agricultural Census) (Rome), URL: https://censimentoagricoltura.istat.it/ [accessed 16 January 2014].

  • Jaffrin, A., & Morisot, A. (1994). Role of structure, dirt and conden- sation on the light transmission of greenhouse covers. Plasticulture, 94(1), 33–44.

    Google Scholar 

  • Jaffrin, A., Bentounes, N., Joan, A., & Makhlouf, S. (2003). Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosystems Engineering, 86(1), 113–123. doi:10.1016/S1537-5110(03)00110-7.

    Article  Google Scholar 

  • Jolliet, O., Danloy, L., Gay, J.-B., Munday, G. L., & Reist, A. (1991). HORTICERN: an improved static model for predicting the energy consumption of a greenhouse. Agricultural and Forest Meteorology, 55(3–4), 265–294. doi:10.1016/0168-1923(91)90066-Y.

    Article  Google Scholar 

  • Kondili, E., & Kaldellis, J. K. (2006). Optimal design of geothermal–solar greenhouses for the minimisation of fossil fuel consumption. Applied Thermal Engineering, 26(8–9), 905–915. doi:10.1016/j.applthermaleng.2005.09.015.

    Article  Google Scholar 

  • Körner, O., Bakker, M., & Heuvelink, E. (2004). Daily temperature integration: a simulation study to quantify energy consumption. Biosystems Engineering, 87(3), 333–343. doi:10.1016/j.biosystemseng.2003.11.003.

    Article  Google Scholar 

  • Lee, J.-Y. (2009). Current status of ground source heat pumps in Korea. Renewable and Sustainable Energy Reviews, 13(6–7), 1560–1568. doi:10.1016/j.rser.2008.10.005.

    Article  Google Scholar 

  • Lo Russo, S., Boffa, C., & Civita, M. V. (2009). Low-enthalpy geothermal energy: an opportunity to meet increasing energy needs and reduce CO2 and atmospheric pollutant emissions in Piemonte, Italy. Geothermics, 38(2), 254–262. doi:10.1016/j.geothermics.2008.07.005.

    Article  Google Scholar 

  • Lund, J. W., & Falls, K. (2012). Direct heat utilization of geothermal energy. In Comprehensive Renewable Energy (Vol. 7, pp. 171–188). Elsevier Ltd. doi:10.1016/B978-0-08-087872-0.00707-1.

  • Marzi, V., & Scarascia Mugnozza, G. (2014). La grande serra d’ Europa - Candela, il modello Ciccolella da esportare. (M. A. Editore, Ed.).

  • Mesmoudi, K., Soudani, A., Zitouni, B., Bournet, P. E., & Serir, L. (2010). Experimental study of the energy balance of unheated greenhouse under hot and arid climates: study for the night period of winter season. Journal of the Association of Arab Universities for Basic and Applied Sciences, 9(1), 27–37. doi:10.1016/j.jaubas.2010.12.007.

    Article  Google Scholar 

  • Nayak, S., & Tiwari, G. N. (2008). Energy and exergy analysis of photovoltaic/thermal integrated with a solar greenhouse. Energy and Buildings, 40(11), 2015–2021. doi:10.1016/j.enbuild.2008.05.007.

    Article  Google Scholar 

  • Nayak, S., & Tiwari, G. N. (2009). Theoretical performance assessment of an integrated photovoltaic and earth air heat exchanger greenhouse using energy and exergy analysis methods. Energy and Buildings, 41(8), 888–896. doi:10.1016/j.enbuild.2009.03.012.

    Article  Google Scholar 

  • NGMA (2000). Standards for heat loss in greenhouse structures. National Greenhouse Manufactures Association (NGMA) URL: http://www.ngma.com/standardpdf/heatloss.pdf [accessed 16 January 2014].

  • Nijskens, J., Deltour, J., Coutisse, S., & Nisen, A. (1985). Radiation transfer through covering materials, solar and thermal screens of greenhouses. Agricultural and Forest Meteorology, 35(1–4), 229–242. doi:10.1016/0168-1923(85)90086-3.

    Article  Google Scholar 

  • Osservatorio di Chimica, Fisica e Geologia Ambientali, OCFGA (2002). Unpublished data.

  • Ozgener, O., & Hepbasli, A. (2005a). Experimental performance analysis of a solar assisted ground-source heat pump greenhouse heating system. Energy and Buildings, 37(1), 101–110. doi:10.1016/j.enbuild.2004.06.003.

    Article  Google Scholar 

  • Ozgener, O., & Hepbasli, A. (2005b). Performance analysis of a solar-assisted ground-source heat pump system for greenhouse heating: an experimental study. Building and Environment, 40(8), 1040–1050. doi:10.1016/j.buildenv.2004.08.030.

    Article  Google Scholar 

  • Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39–51. doi:10.1016/S0960-1481(03)00135-6.

    Article  Google Scholar 

  • Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Solar greenhouse an option for renewable and sustainable farming. Renewable and Sustainable Energy Reviews, 15(8), 3934–3945. doi:10.1016/j.rser.2011.07.030.

    Article  Google Scholar 

  • Pardossi, A., & Tognoni, F. (1999). Greenhouse industry in Italy. Acta Horticulturae, 481, 769–770.

    Article  Google Scholar 

  • Pieters, J. G., & Deltour, J. M. (1999). Modelling solar energy input in greenhouses. Solar Energy, 67(1–3), 119–130.

    Article  Google Scholar 

  • Popovski, K., & Popovska Vasilevska, S. (2003). Prospects and problems for geothermal use in agriculture in Europe. Geothermics, 32(4–6), 545–555. doi:10.1016/j.geothermics.2003.07.009.

    Article  Google Scholar 

  • Popovski, P. K., & Vasilevska, S. P. (2008). Geothermal application in europe—overview in agriculture. In IGA - International Summer School (pp. 1–10).

  • Rafferty, K. (1986). Some considerations for the heating of greenhouses with geothermal energy. Geothermics, 15(2), 227–244.

    Article  Google Scholar 

  • Rivington, M., Matthews, K. B., Buchan, K., Miller, D. G., Bellocchi, G., & Russell, G. (2013). Climate change impacts and adaptation scope for agriculture indicated by agro-meteorological metrics. Agricultural Systems, 114, 15–31. doi:10.1016/j.agsy.2012.08.003.

    Article  Google Scholar 

  • Russi, D. (2008). An integrated assessment of a large-scale biodiesel production in Italy: killing several birds with one stone? Energy Policy, 36(3), 1169–1180. doi:10.1016/j.enpol.2007.11.016.

    Article  Google Scholar 

  • Russo, G., Anifantis, A. S., Verdiani, G., & Mugnozza, G. S. (2014). Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Biosystems Engineering, 127, 11–23. doi:10.1016/j.biosystemseng.2014.08.002.

    Article  Google Scholar 

  • Schneider, U., & Smith, P. (2008). Energy intensities and greenhouse gas emission mitigation in global agriculture. Energy Efficiency, 2(2), 195–206. doi:10.1007/s12053-008-9035-5.

    Article  Google Scholar 

  • Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. H. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162–171. doi:10.1016/j.scienta.2010.09.016.

    Article  Google Scholar 

  • Seginer, I. (1989). Optimal greenhouse production under economic constraints. Agricultural Systems, 29(1), 67–80. doi:10.1016/0308-521X(89)90071-1.

    Article  Google Scholar 

  • Servizio Protezione Civile - Centro Funzionale Regionale e Struttura di Monitoraggio Meteoclimatico, Regione Puglia (2011). Mappe climatiche in Puglia: metodologie, strumenti e risultati 2011. URL: http://www.protezionecivile.puglia.it/public/images/mappeclim/mappe_climatiche_2011.pdf.

  • Sethi, V. P., Sumathy, K., Lee, C., & Pal, D. S. (2013). Thermal modeling aspects of solar greenhouse microclimate control: a review on heating technologies. Solar Energy, 96, 56–82. doi:10.1016/j.solener.2013.06.034

  • Starace, G., Congedo, P., & Colangelo, G. (2005). Horizontal heat exchangers for GSHP. Efficiency and cost investigation for three different applications (pp. 1–8). Trondheim: 18th International Conference on Efficiency, Cost, Optimization, Simulation and Environment - ECOS 2005.

    Google Scholar 

  • Starace, G., Congedo, P. M., & Colangelo, G. (2006). Computational sensitivity analysis of horizontal heat exchangers for GSHPs. In ASME-ATI Conference—Energy: Production, Distribution and Conservation (pp. 467–476). Milan, Italy, May14/17th 2006.

  • Stolfi, N., & Triolo, L. (1988). Un migliore uso della energia nelle serre manuale per serricoltori. (F. Angeli, Ed.) (ENEA Milan.).

  • Tong, Y., Kozai, T., Nishioka, N., & Ohyama, K. (2010). Greenhouse heating using heat pumps with a high coefficient of performance (COP). Biosystems Engineering, 106(4), 405–411. doi:10.1016/j.biosystemseng.2010.05.003.

    Article  Google Scholar 

  • Vieri, M., & Ceccatelli, M. (2003). Uso razionale delle risorse nel florovivaismo: i fabbisogni energetici. Agenzia Regionale per lo Sviluppo e l’Innovazione nel settore Agricolo-forestale (ARSIA). Quaderno 2/2003.

  • Von Elsner, B., Briassoulis, D., Waaijenberg, D., Mistriotis, A., von Zabeltitz, C., Gratraud, J., et al. (2000). Review of structural and functional characteristics of greenhouses in European Union countries: part I, design requirements. Journal of Agricultural Engineering Research, 75(1), 1–16. doi:10.1006/jaer.1999.0502.

    Article  Google Scholar 

  • Von Zabeltitz, C. (2011). Integrated greenhouse systems for mild winter climates: climatic conditions, design, construction, maintenance and climate control. Berlin: Springer-Verlag, Ed.

    Book  Google Scholar 

  • Waaijenberg, D. (2006). Design, construction and maintenance of greenhouse structures. Acta Horticulturae, 710, 31–42.

    Article  Google Scholar 

  • Wu, R. (2009). Energy efficiency technologies—air source heat pump vs ground source heat pump. Journal of Sustainable Development, 2, 14–23.

    Google Scholar 

Download references

Acknowledgments

We thank ASSOCODIPUGLIA and, in particular, its provincial department CODILE staff for their support in the organization of the farm and for the questionnaire administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania D’Arpa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Arpa, S., Colangelo, G., Starace, G. et al. Heating requirements in greenhouse farming in southern Italy: evaluation of ground-source heat pump utilization compared to traditional heating systems. Energy Efficiency 9, 1065–1085 (2016). https://doi.org/10.1007/s12053-015-9410-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12053-015-9410-y

Keywords

Navigation