Skip to main content
Log in

Evolution equations with fractional Gross Laplacian and Caputo time fractional derivative

  • Published:
Proceedings - Mathematical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we consider the evolution equations with fractional Gross Laplacian and generalized Caputo time fractional deravitive in infinite dimensional space of entire functions with growth condition. The convolution between a generalized function related to the Mittag–Leffler function and the initial condition has been given to demonstrate the explicit solutions. Moreover, we prove that the fundamental solution is related to the inverse stable subordinators and the symmetric \(\alpha \)-stable distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chaves A, A fractional diffusion equation to describe Lévy flights, Phys. Lett. A  239 (1998) 13–16

    Article  MathSciNet  Google Scholar 

  2. Chung D M and Ji U C, Some Cauchy problems in white noise analysis and associated semigroups of operators, Stoch. Anal. Appl.  17(1) (1999) 1–22

    Article  MathSciNet  Google Scholar 

  3. Chrouda M B, Eloued M and Ouerdiane H, Convolution calculus and applications to stochastic differential equations, Soochow J. Math.  28(4) (2002) 375–388

    MathSciNet  MATH  Google Scholar 

  4. Erraoui M, Da Silva L and Ouerdiane H, Generalized fractional evolution equation, Fract. Calc. Appl. Anal. 10(4) (2007) 375–398

    MathSciNet  MATH  Google Scholar 

  5. Gross L, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967) 123–181

    Article  MathSciNet  Google Scholar 

  6. Gannoun R, Hachaichi R, Kree P and Ouerdiane H, Division de fonctions holomorphes a croissance \(\theta \)-exponentielle, Technical Report E 00-01-04, BiBoS (2000) (University of Bielefeld)

  7. Gannoun R, Hachaichi R, Ouerdiane H and Rezgui A, Un théorème de dualité entre espaces de fonctions holomorphes à croissance exponentielle, J. Funct. Anal.  171(1) (2000) 1–14

    Article  MathSciNet  Google Scholar 

  8. Hida T, Kuo H, Potthof J and Streit L, White noise: an infinite dimensional calculus (1993) (Dordrecht: Kluwer Academic Publishers)

    Book  Google Scholar 

  9. Hida T, Obata N and Saito K, Infinite-dimensional rotations and Laplacians in terms of white noise calculus, Nagoya Math. J. 128 (1992) 65–93

    Article  MathSciNet  Google Scholar 

  10. Horrigue S and Ouerdiane H, Quantum Gross Laplacian and applications, Acta Appl. Math. 110(1) (2010) 215–226

    Article  MathSciNet  Google Scholar 

  11. Horrigue S and Ouerdiane H, Quantum Heat Equation with Quantum \(K\)-Gross Laplacian: Solutions and Integral Representation, World Scientific, QP-PQ: Quantum Probability and White Noise Analysis (2010) vol. 25, pp. 185–202

  12. Horrigue S and Ouerdiane H, Rotation invariant of Quantum Gross Laplacian, AIP Conf. Proc. 1232, 288 (2010)

  13. Horrigue S and Ouerdiane H, Equicontinuous quantum generators, AIP Conf. Proc. 1327, 361 (2011)

  14. Horrigue S and Ouerdiane H, Rotation invariance of quantum Laplacians, Stoch. Int. J. Probab. Stoch. Process. 84(2–3) (2012) 335–345

    Article  MathSciNet  Google Scholar 

  15. Horrigue S, Ouerdiane H and Salhi I, Generalized fraction evolution equations with fractional Gross Laplacian, Fract. Calc. Appl. Anal. 19(2) (2016) 394–407, https://doi.org/10.1515/fca-2016-0021

    Article  MathSciNet  MATH  Google Scholar 

  16. Kilbas A A, Pierantozzi T, Trujillo J J and Vázquez L, On the solution of fractional evolution equations, J. Phys. A 37(9) (2004) 3271–3283

    Article  MathSciNet  Google Scholar 

  17. Kilbas A A, Srivastava H M and Trujillo J J, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, vol. 204 (2006) (Amsterdam: Elsevier Science B.V.)

    Book  Google Scholar 

  18. Kuo H H, On Laplacian operators of generalized Brownian functionals, Lect. Notes Math. 1203 (1986) pp. 119–128

    Article  MathSciNet  Google Scholar 

  19. Mainardi F, Pagnini G and Gorenflo R, Some aspects of fractional diffusion equations of single and distributed order, Appl. Math. Comput. 187(1) (2007) 295–305

    MathSciNet  MATH  Google Scholar 

  20. Mainardi F, Raberto M, Gorenflo R and Scalas E, Fractional calculus and continuous-time finance, II: The waiting-time distribution, Phys. A 287 (2000) 468–481

    Article  Google Scholar 

  21. Meerschaert M M, Benson D A, Scheffler H and Baeumer B, Stochastic solution of space–time fractional diffusion equations, Phys. Rev. E  65 (2002) 1103–1106

    Article  MathSciNet  Google Scholar 

  22. Miller K and Ross B An introduction to the fractional calculus and fractional differential equations (1993) (New York: Wiley and Sons)

    MATH  Google Scholar 

  23. Piech M A, A fundamental solution of the parabolic equation on Hilbert space II: The semigroup property, Trans. Am. Math. Soc.  150 (1970) 257–286

    MathSciNet  MATH  Google Scholar 

  24. Scalas E, Gorenflo R and Mainardi F, Fractional calculus and continuous-time finance, Phys. A 284 (2000) 376–384

    Article  MathSciNet  Google Scholar 

  25. Uchaikin V V, Fractional derivatives for physicists and engineers, (2013) (Berlin: Springer)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the anonymous reviewers for their valuable suggestions and corrections for improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeljabbar Ghanmi.

Additional information

Communicating Editor: E K Narayanan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanmi, A., Horrigue, S. Evolution equations with fractional Gross Laplacian and Caputo time fractional derivative. Proc Math Sci 129, 80 (2019). https://doi.org/10.1007/s12044-019-0507-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12044-019-0507-7

Keywords

2000 Mathematics Subject Classification

Navigation