Skip to main content
Log in

Adaptive stochastic resonance under Poisson white noise background and its application for bolt looseness detection

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Bolts are utilised extensively in machinery and often bear large loads. Reliable connection of bolts is related to the effective functioning of machinery. Therefore, it is of utmost importance to detect bolt looseness in time. However, the identification of bolt looseness is typically challenging due to the strong background noise. Compared with Gaussian white noise, only few researches were conducted on Poisson white noise. To detect the looseness of the bolt in the presence of strong Poisson white noise, we propose a novel method based on sub-harmonic resonance, time-domain averaging and adaptive stochastic resonance. The disadvantages of damaging characteristic frequencies that exist in a majority of approaches are overcome. In addition, the looseness is assessed by the quality factor derived from physical science. To verify the efficacy of the method, we propose numerical simulations and experimental validations. The results demonstrate that the proposed method has effectively detected bolt looseness under strong Poisson white noise. The detection of bolt looseness might benefit greatly by adopting the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A Fuliński and P F Góra, J. Stat. Phys 101, 483 (2000)

    Article  ADS  Google Scholar 

  2. Z Wang and X Shi, Cogn. Neurodyn. 14, 115 (2020)

    Article  Google Scholar 

  3. C Q Li, Prob. Eng. Mech. 15, 359 (2000)

    Article  Google Scholar 

  4. L R Russell, Waterw. Port. C-ASCE 97, 139 (1971)

    Google Scholar 

  5. B F Spencer, J Tang and C G Hilal, J. Sound Vib. 140, 163 (1990)

    Article  ADS  Google Scholar 

  6. K Kyoung, E Powers, C Ritz, R Miksad and F Fischer, IEEE J. Ocean. Eng. 12, 568 (1987)

  7. C C Tung, J. Eng. Mech. Div. 95, 41 (1969)

    Article  Google Scholar 

  8. J B Roberts, J. Sound Vib. 24, 23 (1972)

    Article  ADS  Google Scholar 

  9. D Huang, J Yang, D Zhou, G Litak and H Liu, J. Comput. Nonlin. Dyn. 14, 031010 (2019)

    Article  Google Scholar 

  10. G Muscolino, G Ricciardi and P Cacciola, Int. J. Nonliner Mech. 38, 1269 (2003)

    Article  Google Scholar 

  11. S Chaki, G Corneloup, I Lillamand and H Walaszek, J. Press. Vess.- T. ASME 129, 383 (2006)

  12. G C Johnson, A C Holt and B Cunningham, J. Test. Eval. 14, 253 (1986)

    Article  Google Scholar 

  13. T Wang, G Song, Z Wang and Y Li, Smart. Mater. Struct. 22, 087001 (2013)

    Article  ADS  Google Scholar 

  14. C Liang, F P Sun and C A Rogers, J. Int. Mater. Syst. Str. 8, 335 (1997)

    Article  Google Scholar 

  15. T Wang, G Song, S Liu, Y Li and H Xiao, Int. J. Distrib. Sens. Netw. 9, 871213 (2013)

    Article  Google Scholar 

  16. D Goyal, A Choudhary and B S Pabla, J. Int. Manuf. 31, 1275 (2020)

    Article  Google Scholar 

  17. Q Jiang, F Chang and B Sheng, IEEE Access 7, 69795 (2019)

    Article  Google Scholar 

  18. J Li, X Chen and Z He, J. Sound. Vib. 332, 5999 (2013)

    Article  ADS  Google Scholar 

  19. L Gammaitoni, P Hänggi, P Jung and F Marchesoni, Rev. Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  20. B McNamara and K Wiesenfeld, Phys. Rev. A 39, 4854 (1989)

    Article  ADS  Google Scholar 

  21. S Mitaim and B Kosko, Proc. IEEE 86, 2152 (1998)

    Article  Google Scholar 

  22. L He, X Liu and Z Jiang, Indian J. Phys. 77, 408 (2020)

    Google Scholar 

  23. P Xu, Y Jin and Y Zhang, Appl. Math. Comput. 346, 352 (2019)

    Article  MathSciNet  Google Scholar 

  24. Y Zhang, Y Jin and P Xu, Chaos 29, 023127 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. S Wang, F Wang, S Wang and G Li, Chin. J. Phys. 56, 994 (2018)

    Article  MathSciNet  Google Scholar 

  26. G Zhang, D Hu and T Zhang, IEEE Access 7, 58435 (2019)

    Article  Google Scholar 

  27. A S Pikovsky and J Kurths, Appl. Phys. Lett. 78, 775 (1997)

    Article  Google Scholar 

  28. C Yang, Z Wang and T Gong, Russ. J. Nondestruct. 59, 560 (2023)

    Article  Google Scholar 

  29. Y K Lin and G Q Cai, Probabilistic structural dynamics: advanced theory and applications (McGraw-Hill, New York, 1995)

    Google Scholar 

  30. J J Meyer and D E Adams, Nonlinear Dyn. 81, 103 (2015)

    Article  Google Scholar 

  31. M Zhang, Y Shen, L Xiao and W Qu, Nonlinear Dyn. 88, 1643 (2017)

    Article  Google Scholar 

  32. J H Yang, M A F Sanjuán and H G Liu, Commun. Nonlinear Sci. Numer. Simulat. 30, 362 (2016)

    Article  Google Scholar 

  33. E B Halim, M S Choudhury, S L Shah and M J Zuo, Mech. Syst. Signal Process. 22, 261 (2016)

    Article  ADS  Google Scholar 

  34. Y F Xu, Gao J, G C Chen and J S Yu, Appl. Mech. Mater. 63, 106 (2011)

    Article  ADS  Google Scholar 

  35. S Yang, M Wang and L Jiao, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), IEEE 1, 320 (2004)

  36. C Yang, J Yang, Z Zhu, G Shen and Y Zheng, Meas. Sci. Technol. 31, 045001 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 12072362), the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX23-2683), the Graduate Innovation Program of China University of Mining and Technology (Grant No. 2023WLJCRCZL04) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, A., Gong, T. & Yang, J. Adaptive stochastic resonance under Poisson white noise background and its application for bolt looseness detection. Pramana - J Phys 98, 69 (2024). https://doi.org/10.1007/s12043-024-02757-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-024-02757-8

Keywords

PACS Nos

Navigation