Skip to main content
Log in

Modulational instability of ion-acoustic waves in multicomponent plasma using \(\kappa \)-deformed Kaniadakis distribution

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The present investigation focusses on studying the modulational instability of ion-acoustic waves in a multicomponent plasma system comprising positive ions, negative ions and electrons. The electron component is described by the \(\kappa \)-deformed Kaniadakis distribution, with the deformation parameter \(\kappa \) ranging from \(-\) 0.4 to 0.4. Using the standard perturbation method, the dispersion relation is derived from the governing equations. It is found that the dispersion relation is independent of \(\kappa \) but depends on other factors, such as the density ratio (\(\alpha \)), mass ratio (\(\eta \)) and ion temperatures (\(\sigma _{\pm }\)). Two distinct ion-acoustic modes, namely the slow mode and the fast mode, are analysed in detail based on the phase velocity. The nonlinear Schrödinger equation is derived from the governing equations, whose dispersion and nonlinearity coefficients significantly impact the stability characteristics of ion-acoustic waves. Three plasma systems, namely H\(^{+}\)H\(^{-}\), Ar\(^{+}\)F\(^{-}\) and H\(^{+}\)O\(_2^{-}\), which exist in the D-region of the atmosphere, are considered in this study. A comprehensive analysis is conducted for both slow and fast modes, taking into account the influence of the deformation parameter \(\kappa \), mass ratios and ion temperatures. This investigation is relevant for understanding the behaviour of ion-acoustic waves in space and laboratory plasmas where multiple ion species coexist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M Bacal and G W Hamilton, Phys. Rev. Lett. 42, 1538 (1979)

    Article  ADS  Google Scholar 

  2. R A Gottscho and C E Gaebe, IEEE Trans. Plasma Sci. 14, 92 (1986)

    Article  ADS  Google Scholar 

  3. H Kokura, S Yoneda, K Nakamura, N Mitsuhira, M Nakamura and H Sugai, Jpn. J. Appl. Phys. 38(1), 5256 (1999)

    Article  ADS  Google Scholar 

  4. L Boufendi and A Bouchoule, Plasma Sources Sci. Technol. A 11, 211 (2002)

    Article  ADS  Google Scholar 

  5. P H Chaizy, H Réme, J A Sauvaud, C d’Uston, R P Lin, D E Larson, D L Mitchell, K A Anderson, C W Carlson, A Korth and D A Mendis, Nature 349, 393 (1991)

    Article  ADS  Google Scholar 

  6. H S W Massey, Negative ions, 3rd Edn (Cambridge University Press, Cambridge, England, 1976) p. 663

    Google Scholar 

  7. W Swider, Ionospheric modeling edited by J N Korenkev (Birkhäuser, Basel, 1988) p. 403

  8. G C Das and S G Tagare, Plasma Phys. 17, 1025 (1975)

    Article  ADS  Google Scholar 

  9. G O Ludwig, J L Fereira and Y Nakamuka, Phys. Rev. Lett. 52, 275 (1984)

    Article  ADS  Google Scholar 

  10. M K Mishra and R S Chhabra, Phys. Plasmas 3, 4446 (1996)

    Article  ADS  Google Scholar 

  11. F B Rizzato, R S Schneider and D Dillenburg, Plasma Phys. Control. Fusion 29, 1127 (1987)

    Article  ADS  Google Scholar 

  12. N D’Angelo, S V Goeler and T Ohe, Phys. Fluids 9, 1605 (1966)

    Article  ADS  Google Scholar 

  13. R Ichiki, M Shindo and S Yoshimura, T Watanabe and Y Kawai, Phys. Plasmas 8, 4275 (2001)

    Article  ADS  Google Scholar 

  14. J R Asbridge and S J Bame, J. Geophys. Res. 73, 5777 (1968)

    Article  ADS  Google Scholar 

  15. G. Kaniadakis, Physica A 296, 405 (2001)

    Article  ADS  Google Scholar 

  16. G Kaniadakis and A M Scarfone, Physica A 305, 69 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. A M Teweldeberhan, H G Miller and R Tegen, Int. J. Mod. Phys. E 12, 669 (2003)

    Article  ADS  Google Scholar 

  18. T S Biró and G Kaniadakis, Eur. Phys. J. B 50, 3 (2006)

    Article  ADS  Google Scholar 

  19. A Rossani and A M Scarefone, J. Phys. A 37, 4955 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. F I M Pereira, A Silva and J S Alcaniz, Phys. Rev. C 76, 015201 (2007)

    Article  ADS  Google Scholar 

  21. L N Guo, J L Du and Z P Liu, Phys. Lett. A 367, 431 (2007)

    Article  ADS  Google Scholar 

  22. G Lapenta, S Markidis, A Marocchino and G Kaniadakis, Astrophys. J. 666, 949 (2007)

    Article  ADS  Google Scholar 

  23. A Y Abul-Magd and M Abdel-Megeed, Mod. Phys. Lett. B 26, 125059 (2012)

    Article  Google Scholar 

  24. K Ourabah and M Tribeche, Phys. Rev. E 89, 062123 (2014)

    Article  ADS  Google Scholar 

  25. K Ourabah, A H Hamici-Bendimerad and M Tribeche, Phys. Scr. 90, 045101 (2015)

    Article  ADS  Google Scholar 

  26. I Lourek and M Tribeche, Physica A 441, 215 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. L A Gougam and M Tribeche, Phys. Plasma 23, 014501 (2016)

    Article  ADS  Google Scholar 

  28. A Saha and J Tamang, Phys. Plasmas 24, 082101 (2017)

    Article  ADS  Google Scholar 

  29. M Khalid, S A El-Tantawy and A Rahman, Astrophys. Space Sci. 36, 75 (2020)

    Article  ADS  Google Scholar 

  30. S N Naeem, A Qamar, M Khalid and A Rahman, Eur. Phys. J. Plus 136, 1205 (2021)

    Article  Google Scholar 

  31. P Bala and A Kaur, Indian J. Pure Appl. Phys. 59, 577 (2021)

    Google Scholar 

  32. L Tan, Q Yang, H Chen and S Liu, Entropy 24, 1211 (2022)

    Article  ADS  Google Scholar 

  33. S Raut, K K Mondal, P Chatterjee and S Roy, Eur. Phys. J. D (2023), doi.org/10.1140/epjd/s10053-023-00676-8

    Article  Google Scholar 

  34. R Pottelette, R E Ergun, R A Treumann, M Berthomier, C W Carlson, J P McFadden and I Roth, Geophys. Res. Lett. 26, 2629 (1999)

    Article  ADS  Google Scholar 

  35. M K Mishra, R S Chhabra and S R Sharma, Phys. Rev. E 48, 1 (1993)

    Article  Google Scholar 

  36. P Bala, T S Gill and H Kaur, J. Plasma Phys. 78, 265 (2012)

    Article  ADS  Google Scholar 

  37. B Ghosh and S Banerjee, Afr. Rev. Phys. 10, 0031 (2015)

    Google Scholar 

  38. C S Panguetna, C B Tabi and T C Kofane, Phys. Plasmas 24, 092114 (2017)

    Article  ADS  Google Scholar 

  39. M R Amin, G E Morfill and P K Shukla, Phys. Rev. E 58, 6517 (1998)

    Article  ADS  Google Scholar 

  40. T S Gill, H Kaur, S Bansal, N S Saini and P Bala, Eur. Phys. J. D 41, 151 (2007)

    Article  ADS  Google Scholar 

  41. A S Bains, M Tribeche and T S Gill, Phys. Plasmas 18, 022108 (2011)

    Article  ADS  Google Scholar 

  42. S Sultana and I Kourakis, Plasma Phys. Contr. Fusion 53, 045003 (2011)

    Article  ADS  Google Scholar 

  43. A S Bains, M Tribeche and T S Gill, Phys. Lett. A 375, 2059 (2011)

    Article  ADS  Google Scholar 

  44. P Eslami1 and M Mottaghizadeh, Ind. J. Phys. 88, 521 (2014)

  45. S Bansal, T S Gill and M Aggarwal, Phys. Plasma 26, 072116 (2019)

    Article  ADS  Google Scholar 

  46. T S Gill, P Bala, H Kaur, N S Saini, S Bansal and J Kaur, Eur. Phys. J. D 31, 100 (2004)

    Article  ADS  Google Scholar 

  47. H J Doucet, Phys. Lett. A 33, 283 (1970)

    Article  ADS  Google Scholar 

  48. A Y Wong, D L Mamas and D Arnush, Phys. Fluids 18, 1489 (1975)

    Article  ADS  Google Scholar 

  49. Y Nakamura and I Tsukabayashi, Phys. Rev. Lett. 52, 2356 (1984)

    Article  ADS  Google Scholar 

  50. Y Nakamura, J L Ferreira and G O Ludwig, J. Plasma Phys. 33, 237 (1985)

    Article  ADS  Google Scholar 

  51. M K Mishra, A K Arora and R S Chhabra, Phys. Rev. E 66, 046402 (2002)

    Article  ADS  Google Scholar 

  52. S A Elwakil, E K El-Shewy and H G Abdelwahed, Phys. Plasmas 17, 052301 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Bala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, P., Kaur, G. Modulational instability of ion-acoustic waves in multicomponent plasma using \(\kappa \)-deformed Kaniadakis distribution. Pramana - J Phys 98, 7 (2024). https://doi.org/10.1007/s12043-023-02688-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02688-w

Keywords

PACS Nos

Navigation