Skip to main content
Log in

Synchronization and firing patterns of coupled one-dimensional neuron maps

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Exploring the collective behavior of neurons in complex networks has been a hot topic in complex network analysis. In this regard, many studies have been conducted to explore the collective behavior of neurons using different flow-based and map-based neuronal models. The map-based models have some advantages over the flow-based models, such as their simplicity, efficiency, and flexibility. This paper investigates the collective behaviors of a recently proposed one-dimensional piecewise nonlinear map-based neuronal model with rich dynamical properties. The neurons are configured in a Watts–Strogatz small-world network structure under five conditions considering electrical synapses, inner linking functions, chemical synapses, both electrical and chemical synapses, and both inner linking and chemical synaptic functions as the neurons’ communication channels. We found that the electrically coupled neurons cannot achieve an entirely synchronous firing pattern; however, in other fourth cases, they can reach a synchronous state. Besides the synchronization state, cluster synchronization, imperfect synchronization, chimera, and solitary state are other firing patterns observed in the studied network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S Boccaletti, J Kurths, G Osipov, D L Valladares and C S Zhou, Phys. Rep. 366(1), 1 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  2. S N Chowdhury, S Majhi, M Ozer, D Ghosh and M Perc, New J. Phys. 21(7), 073048 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. A Arenas, A Díaz-Guilera, J Kurths, Y Moreno and C Zhou, Phys. Rep. 469(3), 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  4. S Vaidyanathan and K Rajagopal, Eur. J. Res. 64(1), 94 (2011)

    Google Scholar 

  5. E Rybalova, G Strelkova, E Schöll and V Anishchenko, Chaos 30(6), 061104 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  6. R G Andrzejak, G Ruzzene, I Malvestio, K Schindler, E Schöll and A Zakharova, Chaos 28(9), 091101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. M M Ibrahim, M A Kamran, M M N Mannan, I H Jung and S Kim, Sci. Rep. 11(1), 3884 (2021)

    Article  ADS  Google Scholar 

  8. F D Rossa, L Pecora, K Blaha, A Shirin, I Klickstein and F Sorrentino, Nat. Commun. 11(1), 3179 (2020)

    Article  ADS  Google Scholar 

  9. A V Bukh, E Schöll and V S Anishchenko, Chaos 29(5), 053105 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  10. S Majhi, M Perc and D Ghosh, Sci. Rep. 6, 39033 (2016)

    Article  ADS  Google Scholar 

  11. E Rybalova, V S Anishchenko, G I Strelkova and A Zakharova, Chaos 29(7), 071106 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  12. C Risueno-Segovia and S R Hage, Theta synchronization of phonatory and articulatory systems in marmoset monkey vocal production, Curr. Biol. 30(21) 4276 (2020)

    Article  Google Scholar 

  13. S Majhi, B K Bera, D Ghosh and M Perc, Phys. Life Rev. 28 100 (2019)

    Article  ADS  Google Scholar 

  14. K K W Cheung and U Ozturk, Chaos 30(6), 063117 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. F A La Sorte and C H Graham, J. Anim. Ecol. 90(2), 343 (2021)

    Article  Google Scholar 

  16. S Shahal, A Wurzberg, I Sibony, H Duadi, E Shniderman, D Weymouth, N Davidson and M Fridman, Nat. Commun. 11(1), 3854 (2020)

  17. C Zou, X Wei, Q Zhang and Y Liu, IEEE Access 6, 20584 (2018)

    Article  Google Scholar 

  18. H Bao, Y Zhang, W Liu and B Bao, Nonlinear Dyn. 100(1), 937 (2020)

    Article  Google Scholar 

  19. B Bao, Q Yang, D Zhu, Y Zhang, Q Xu and M Chen, Nonlinear Dyn. 99(3), 2339 (2020)

    Article  Google Scholar 

  20. J Ramadoss, S Aghababaei, F Parastesh, K Rajagopal, S Jafari and I Hussain, Complexity 2021, 2437737 (2021)

    Article  Google Scholar 

  21. W Fan, X Chen, H Wu, Z Li and Q Xu, AEU - Int. J. Electron. Commun. 158, 154454 (2023)

    Article  Google Scholar 

  22. A L Hodgkin and A F Huxley. J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  23. J L Hindmarsh and R M Rose, Nature 296(5853), 162 (1982)

    Article  ADS  Google Scholar 

  24. R FitzHugh, Biophys. J. 1(6), 445 (1961)

    Article  ADS  Google Scholar 

  25. N F Rulkov, Phys. Rev. E 65(4), 041922 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  26. E M Izhikevich, IEEE Trans. Neural Netw. 14(6) 1569 (2003)

    Article  MathSciNet  Google Scholar 

  27. B Ibarz, J M Casado and M A F Sanjuán, Phys. Rep. 501(1–2), 1 (2011)

    Article  ADS  Google Scholar 

  28. A ZurBonsen, I Omelchenko, A Zakharova and E Schöll (2018) Eur. Phys. J. B 91, 1

    Article  Google Scholar 

  29. M Winkler, J Sawicki, I Omelchenko, A Zakharova, V Anishchenko and E Schöll, Europhys. Lett. 126(5) 50004 (2019)

    Article  ADS  Google Scholar 

  30. Q Wang, Z Duan, M Perc and G Chen, Europhys. Lett. 83(5), 50008 (2008)

    Article  ADS  Google Scholar 

  31. H Sun and H Cao, Nonlinear Dyn. 84(4), 2423 (2016)

    Article  Google Scholar 

  32. D Hu and H Cao, Commun. Nonlinear Sci. Numer. Simul. 35, 105 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. S Rakshit, A Ray, B K Bera and D Ghosh, Nonlinear Dyn. 94(2), 785 (2018)

    Article  Google Scholar 

  34. K Li, H Bao, H Li, J Ma, Z Hua and B-C Bao, IEEE Trans. Ind. Inf. 18(3), 1726 (2021)

    Article  Google Scholar 

  35. M Mehrabbeik, F Parastesh, J Ramadoss, K Rajagopal, H Namazi and S Jafari, Math. Biosci. Engg. 18(6), 9394 (2021)

    Article  Google Scholar 

  36. H Bao, Z-Y Hua, W-B Liu and B-C Bao, Sci. China Technol. Sci. 64(10), 2281 (2021)

    Article  ADS  Google Scholar 

  37. W Fan, H Wu, Z Li and Q Xu, Eur. Phys. J. Spec. Top. (2022)

  38. Z Wang, H Tian, O Krejcar and H Namazi, Eur. Phys. J. Spec. Top. (2022)

  39. N Zandi-Mehran, S Panahi, Z Hosseini, S M R H Golpayegani and S Jafari, Chaos, Solitons Fractals 132, 109558 (2020)

    Article  Google Scholar 

  40. B Ramakrishnan, M Mehrabbeik, F Parastesh, K Rajagopal and S Jafari, Electronics 11(1), 153 (2022)

    Article  Google Scholar 

  41. D J Watts and S H Strogatz, Nature 393(6684), 440 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the Centre for Nonlinear Systems, Chennai Institute of Technology, India, vide funding number CIT/CNS/2022/RD/006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahtab Mehrabbeik.

Ethics declarations

Data availability

No new data were created or analyzed in this study.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vivekanandhan, G., Mehrabbeik, M., Natiq, H. et al. Synchronization and firing patterns of coupled one-dimensional neuron maps. Pramana - J Phys 97, 171 (2023). https://doi.org/10.1007/s12043-023-02628-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02628-8

Keywords

PACS

Navigation