Skip to main content
Log in

Thermoelectric performance of cadmium-based LiCdX (X = N, P, As, Sb and Bi)-filled tetrahedral semiconductors: applications in green energy resources

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Half-Heusler materials have been studied on a large scale due to their high stability and wide range of band gaps. Here, we have studied the fundamental physical and thermoelectric parameters of LiCdX (X = N, P, As, Sb and Bi) and observed that these compounds have F43m space group with 5.31, 6.06, 6.25, 6.64 and 6.81 Å lattice constants for LiCdN, LiCdP, LiCdAs, LiCdSb and LiCdBi, respectively. All compounds exhibit direct band-gap semiconducting behaviour except LiCdBi which shows a metallic nature. In near-infrared and visible regions, these compounds show excellent photovoltaic behaviour, but they restrict far-infrared and ultraviolet radiation. By examining thermoelectric characteristics, we have analysed that at 300 K, ZT achieves unity in both the p- and n-regions for three of these materials, making them prospective thermoelectric candidates at ambient temperature. The studied thermodynamic properties have confirmed that materials are stable which will motivate experimentalists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. M Singh, R Kumar, S Srivastava and T Kumar, Phys. B: Condes. Matter 640, 414056 (2022)

    Article  Google Scholar 

  2. Z A A R Almaghbash, O Arbouche, A Dahani, A Cherifi, M Belabbas, A Zenati, H Mebarki and A Hussain, Int. J. Thermophys. 42, 1 (2021)

    Article  Google Scholar 

  3. B Anissa, D Radouan and I K Durukan, Opt. Quantum Electron. 54, 1 (2022)

    Article  Google Scholar 

  4. A Azouaoui, A Hourmatallah, N Benzakour and K Bouslykhane, J. Solid State Chem. 310, 123020 (2022)

    Article  Google Scholar 

  5. H Nowotny and K Bachmayer, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 81, 488 (1950)

    Article  Google Scholar 

  6. H C Kandpal, C Felser and R Seshadri, J. Phys. D 39, 776 (2006)

    Article  ADS  Google Scholar 

  7. H Mehnane, B Bekkouche, S Kacimi, A Hallouche, M Djermouni and A Zaoui, Superlatt. Microstruct. 51, 772 (2012)

    Article  ADS  Google Scholar 

  8. S Curtarolo, G L Hart, M B Nardelli, N Mingo, S Sanvito and O Levy, Nat. Mater. 12, 191 (2013)

    Article  ADS  Google Scholar 

  9. S Öğüt and K M Rabe, Phys. Rev. B 51, 10443 (1995)

    Article  ADS  Google Scholar 

  10. D Kieven, R Klenk, S Naghavi, C Felser and T Gruhn, Phys. Rev. B 81, 075208 (2010)

    Article  ADS  Google Scholar 

  11. T Gruhn, Phys. Rev. B 82, 125210 (2010)

    Article  ADS  Google Scholar 

  12. F Casper, R Seshadri and C Felser, Phys. Status Solidi A 206, 1090 (2009)

    Article  ADS  Google Scholar 

  13. A Roy, J W Bennett, K M Rabe and D Vanderbilt, Phys. Rev. Lett. 109, 037602 (2012)

    Article  ADS  Google Scholar 

  14. P K Kamlesh, R Gautam, S Kumari and A S Verma, Phys. B: Condens. Matter 615, 412536 (2021)

    Article  Google Scholar 

  15. B Rani, A F Wani, S A Khandy, U B Sharopov, L Patra, K Kaur and S Dhiman, Solid State Commun. 351, 114796 (2022)

    Article  Google Scholar 

  16. F Casper, T Graf, S Chadov, B Balke and C Fels, Semicond. Sci. Technol. 27, 063001 (2012)

    Article  ADS  Google Scholar 

  17. S A Khandy, K Kaur, S Dhiman, J Singh and V Kumar, Comput. Mater. Sci. 188, 110232 (2021)

    Article  Google Scholar 

  18. H Bouafia, B Sahli, M Bousmaha, B Djebour, A Dorbane, S Mokrane and S Hiadsi, Solid State Sci. 118, 106677 (2021)

    Article  Google Scholar 

  19. X Ye, Z Feng, Y Zhang, G Zhao and D J Singh, Phys. Rev. B 105, 104309 (2022)

    Article  ADS  Google Scholar 

  20. M Sarwan, V A Shukoor and S Singh, in Mathematics in computational science and engineering edited by R Bhardwaj, J Mishra, S Narayan, G Suseendran (Wiley Online Library 2022) pp. 181–197

  21. M K Yadav and B Sanyal, J. Alloys Compd. 622, 388 (2015)

    Article  Google Scholar 

  22. A Mellouki, L Kalarasse, B Bennecer and F Kalarasse, Comput. Mater. Sci. 42, 579 (2008)

    Article  Google Scholar 

  23. A Bouhemadou, S Bin-Omran, D Allali, S M Al-Otaibi, R Khenata, Y Al-Douri, M Chegaar and A H Reshak, Mater. Res. Bull. 64, 337 (2015)

    Article  Google Scholar 

  24. F Kalarasse, B Bennecer, A Mellouki and L Kalarasse, Comput. Mater. Sci. 43, 791 (2008)

    Article  Google Scholar 

  25. A Mellouki, L Kalarasse, B Bennecer and F Kalarasse, Comput. Mater. Sci. 44, 876 (2009)

    Article  Google Scholar 

  26. Z Wu and R E Cohen, Phys. Rev. B 73, 235116 (2006)

    Article  ADS  Google Scholar 

  27. J P Perdew, K Burke and M Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  28. F Tran and P Blaha, Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  29. P K Kamlesh, R Agarwal, U Rani and A S Verma, Phys. Scr. 96, 115802 (2021)

    Article  ADS  Google Scholar 

  30. U Rani, Y Soni, P K Kamlesh, A Shukla and A S Verma, Int. J. Energy Res. 45, 13442 (2021)

    Article  Google Scholar 

  31. U Rani, P K Kamlesh, R Agarwal, J Kumari and A S Verma, Int. J. Quantum Chem. 121, e26759 (2021)

    Article  Google Scholar 

  32. U Rani, P K Kamlesh, A Shukla and A S Verma, J. Solid State Chem. 300, 122246 (2021)

    Article  Google Scholar 

  33. P K Kamlesh, R Agrawal, U Rani and A S Verma, Mater. Chem. Phys. 275, 125233 (2022)

    Article  Google Scholar 

  34. P K Kamlesh, Pravesh, S Kumari and A S Verma, Phys. Scr. 95, 095806 (2020)

    Article  ADS  Google Scholar 

  35. G K H Madsen and D J Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  36. R J Quinn and J-WG Bos, Mater. Adv. 2, 6246 (2021)

    Article  Google Scholar 

  37. C Fu, S Bai, Y Liu, Y Tang, L Chen, X Zhao and T Zhu, Nature Commun. 6, 8144 (2015)

    Article  ADS  Google Scholar 

  38. C Yu, T J Zhu, R Z Shi, Y Zhang, X B Zhao and J He, Acta Mater. 57, 2757 (2009)

    Article  ADS  Google Scholar 

  39. M Schwall and B Balke, Phys. Chem. Chem. Phys. 15, 1868 (2013)

    Article  Google Scholar 

  40. S Chen, K C Lukas, W Liu, C P Opeil, G Chen and Z Ren, Adv. Energy Mater. 3, 1210 (2013)

    Article  Google Scholar 

  41. W Xie, A Weidenkaff, X Tang, Q Zhang, J Poon and T M Tritt, Nanomaterials 2, 379 (2012)

    Article  Google Scholar 

  42. N S Chauhan, S Bathula, A Vishwakarma, R Bhardwaj, K K Johari, B Gahtori and A Dhar, J. Materiomics 5, 94 (2019)

    Article  Google Scholar 

  43. R He, H S Kim, Y Lan, D Wang, S Chen and Z Ren, RSC Adv. 4, 64711 (2014)

    Article  ADS  Google Scholar 

  44. X Yan, G Joshi, W Liu, Y Lan, H Wang, S Lee, J Simonson, S Poon, T Tritt and G Chen, Nano Lett. 11, 556 (2010)

    Article  ADS  Google Scholar 

  45. A Otero-de-la-Roza, D Abbasi-Pérez and V Luaña, Comput. Phys. Commun. 182, 2232 (2011)

    Article  ADS  Google Scholar 

  46. P Verma, C Singh, P K Kamlesh, K Kaur and A S Verma, J. Mol. Model. 29, 23 (2023)

    Article  Google Scholar 

  47. U Rani, P K Kamlesh, R Agrawal, A Shukla and A S Verma, Energy Technol. 10, 2200002 (2022)

    Article  Google Scholar 

  48. X Peng, L Xing and Z Fang, Phys. B: Condens. Matter 394, 111 (2007)

    Article  ADS  Google Scholar 

  49. R Bacewicz and T F Ciszek, Mater. Res. Bull. 23, 1247 (1988)

    Article  Google Scholar 

  50. A Bouhemadou, Mater. Sci. Semicond. Process. 12, 198 (2009)

    Article  Google Scholar 

  51. R Bacewicz and T F Ciszek, Appl. Phys. Lett. 52, 1150 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Singh Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallavi, Singh, C., Kamlesh, P.K. et al. Thermoelectric performance of cadmium-based LiCdX (X = N, P, As, Sb and Bi)-filled tetrahedral semiconductors: applications in green energy resources. Pramana - J Phys 97, 162 (2023). https://doi.org/10.1007/s12043-023-02627-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02627-9

Keywords

PACS Nos

Navigation