Skip to main content
Log in

Electronic structures and properties of small \((\hbox {BCN})_{x}\) (x =1–5) clusters and \((\hbox {BCN})_{12}\) nanotube

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In an attempt to analyse how the properties evolve with the cluster size, we report the results of a first principle density functional study on the electronic structures and properties of \((\hbox {BCN})_{x}\) clusters (where \(x = 1\) to 5) as well as \((\hbox {BCN})_{12}\) nanotube. We have investigated geometries of \((\hbox {BCN})_{x}\) and their isomers at the B3LYP/6-311G(d) level of theory and their vibrational as well as optical spectra. Their relative stability is discussed by calculating the binding energies. The electronic properties of \((\hbox {BCN})_{x}\) clusters and the nanotube are analysed by the frontier orbitals and density of state curves. The frontier orbital energy gap of \((\hbox {BCN})_{12}\) nanotube is found to be comparable to carbon nanotube but much small as compared to BN nanotube. Various electronic parameters of \((\hbox {BCN})_{x}\) clusters have been calculated and their variation with the increase in x has been analysed. The study should be useful in the design of hybrid BCN-based nanostructures for possible applications analogous to purely carbon-based nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V L Solozhenko, D Andrault, G Fiquet, M Mezouar and D C Rubie, Appl. Phys. Lett. 78, 1385 (2001)

    Article  ADS  Google Scholar 

  2. Q Li, M Wang, A R Oganov, T Cui, Y Ma and G Zou, J. Appl. Phys. 105, 053514 (2009)

    Article  ADS  Google Scholar 

  3. T Kar, M Cuma and S Scheiner, J. Mol. Struct. 556, 275 (2000)

    Article  ADS  Google Scholar 

  4. S Nakano, M Akaishi, T Sasaki and S Yamaoka, Chem. Mater. 6, 2246 (1994)

    Article  Google Scholar 

  5. E Knittle, R B Kaner, R Jeanloz and M L Cohen, Phys. Rev. B 51, 12149 (1995)

    Article  ADS  Google Scholar 

  6. T Komatsu, M Nomura, Y Kakudate and S Fujiwara, J. Mater. Chem. 6, 1799 (1996)

    Article  Google Scholar 

  7. V L Solozhenko, D Andrault, G Fiquet, M Mezouar and D C Rubie, Appl. Phys. Lett. 78, 1385 (2001)

    Article  ADS  Google Scholar 

  8. Y Zhao, D W He, L L Daemen, T D Shen, R B Schwarz, Y Zhu and T W Zerda, J. Mater. Res. 17, 3139 (2002)

    Article  ADS  Google Scholar 

  9. J Haines, J M Leger and G Bocquillon, Annu. Rev. Mater. Res. 31, 1 (2001)

    Article  ADS  Google Scholar 

  10. V V Brazhkin, A G Lyapin and R J Hemley, Philos. Magn. A  82, 231 (2002)

    Article  ADS  Google Scholar 

  11. R B Kaner, J J Gilman and S H Tolbert, Science 308, 1268 (2005)

    Article  Google Scholar 

  12. S Chen, X G Gong and S H Wei, Phys. Rev. Lett. 98, 015502 (2007)

    Article  ADS  Google Scholar 

  13. H Sun, S H Jhi, D Roundy, M L Cohen and S G Louie, Phys. Rev. B 64, 094108 (2001)

    Article  ADS  Google Scholar 

  14. J C Zheng, H Q Wang, A T S Wee and C H A Huan, Phys. Rev. B 66, 092104 (2002)

    Article  ADS  Google Scholar 

  15. X X Yang, L Liu and M H Wu, J. Am. Chem. Soc. 133, 13216 (2011)

    Article  Google Scholar 

  16. M Terrones, N Grobert and H Terrones, Carbon 40, 1665 (2002)

    Article  Google Scholar 

  17. K Raidongia, D Jagadeesan and U K Mousumi, J. Mater. Chem. 18, 83 (2008)

    Article  Google Scholar 

  18. W L Wang, X D Bai, K H Liu and Z Xu, J. Am. Chem. Soc. 128, 6530 (2006)

    Article  Google Scholar 

  19. R Rostamoghli, M Vakilib, A Banaeia, E Pourbashir and K Jalalierad, Chem. Rev. Lett. 1, 31 (2018)

    Google Scholar 

  20. H G Rauf, E A Mahmood, S Majedi and M Sofi, Chem. Rev. Lett. 2, 140 (2019)

    Google Scholar 

  21. K Nejati, A Hosseinian, A Bekhradnia, E Vessally and L Edjlali, J. Mol. Graph. Mod. 74, 1 (2017)

    Article  Google Scholar 

  22. K Nejati, A Hosseinian, L Edjlali and E Vessally, J. Mol. Liq. 229, 167 (2017)

    Article  Google Scholar 

  23. A A Peyghan, M T Baei, M Moghimi and S Hashemian, J. Clust. Sci. 24, 49 (2013)

    Article  Google Scholar 

  24. J Beheshtian, A A Peyghan and Z Bagheri, J. Mol. Model. 19, 833 (2013)

    Article  Google Scholar 

  25. V K Thakur and S I Voicu, Carbohydr. Polym. 146, 148 (2016)

    Article  Google Scholar 

  26. M Miculescu, V K Thakur, F Miculescu and S I Voicu, Polym. Adv. Technol. 27, 844 (2016)

    Article  Google Scholar 

  27. M C Corobea, O Muhulet, F Miculescu, I V Antoniac, Z Vuluga, D Florea, D M Vuluga, M Butnaru, D Ivanov and S I Voicu, Polym. Adv. Technol. 27, 1586 (2016)

    Article  Google Scholar 

  28. A Bhati, A Singh, M Tripathi and S Kumar, Int. J. Photoenergy 2016, 2583821 (2016)

    Article  Google Scholar 

  29. I Kholmanov, J Kim, E Ou, R S Ruoff and L Shi, ACS Nano 9, 11699 (2015)

    Article  Google Scholar 

  30. I N Kholmanov, C W Magnuson, R Piner, J Y Kim, A E Aliev, C Tan, T Y Kim, A A Zakhidov, G Sberveglieri, R H Baughman and R S Ruoff, Adv. Mater. 27, 3053 (2015)

    Article  Google Scholar 

  31. M Ionita, E Vasile, L E Crica, S I Voicu, A M Pandele, S Dinescu, L Predoiu, B Galateanu, A Hermenean and M Costache, Compos. Part B Eng. 72, 108 (2015)

    Article  Google Scholar 

  32. M Ionita, L E Crica, S I Voicu, A M Pandele and H Iovu, Polym. Adv. Technol. 27, 350 (2016)

    Article  Google Scholar 

  33. S Zhang, W K Liu and R S Ruoff, Nano Lett. 4, 293 (2004)

    Article  ADS  Google Scholar 

  34. I Anastopoulos, V A Anagnostopoulos, A Bhatnagar, A C Mitropoulos and G Z Kyzas, Chem. Ecol. 33, 572 (2017)

    Article  Google Scholar 

  35. M R Mananghaya, J. Korean Chem. Soc. 56, 34 (2012)

    Article  Google Scholar 

  36. M Mananghaya, L P Belo and A Beltran, Mater. Chem. Phys. 180, 357 (2016)

    Article  Google Scholar 

  37. M Adamska and U Narkiewicz, J. Fluor. Chem. 200, 179 (2017)

    Article  Google Scholar 

  38. A R Chowdhuri, T Singh, S K Ghosh and S K Sahu, ACS Appl. Mater. Interfaces 8, 16573 (2016)

    Article  Google Scholar 

  39. M Tuerhong, Y Xu and X B Yin, Chin. J. Anal. Chem. 45, 139 (2017)

    Article  Google Scholar 

  40. C Liu, P Zhang, X Zhai, F Tian, W Li, J Yang, Y Liu, H Wang, W Wang and W Liu, Biomaterials 33, 3604 (2012)

    Article  Google Scholar 

  41. S Zhu, J Zhang, C Qiao, S Tang, Y Li, W Yuan, B Li, L Tian, F Liu, R Hu, H Gao, H Wei, H Zhang, H Sun and B Yang, Chem. Commun. 47, 6858 (2011)

    Article  Google Scholar 

  42. S K Bhunia, A Saha, A R Maity, S C Ray and N R Jana, Sci. Rep. 3, 1 (2013)

    Article  Google Scholar 

  43. H Ali, S K Bhunia, C Dalal and N R Jana, ACS Appl. Mater. Interfaces 8, 9305 (2016)

    Article  Google Scholar 

  44. J Lahaye, G Nansé, A Bagreev and V Strelko, Carbon N.Y. 37, 585 (1999)

    Article  Google Scholar 

  45. M R J Sarvestania, R Ahmadib and B F Rik, Chem. Rev. Lett. 3, 175 (2020)

    Google Scholar 

  46. J O Hwang, J S Park, D S Choi, J Y Kim, S H Lee, K E Lee, Y H Kim, M H Song, S Yoo and S O Kim, ACS Nano 6, 159 (2012)

    Article  Google Scholar 

  47. X Wang, X Li, L Zhang, Y Yoon, P K Weber, H Wang, J Guo and H Dai, Science 324, 768 (2009)

    Article  ADS  Google Scholar 

  48. S A Siadati and S Rezazadeh, Chem. Rev. Lett. 1, 77 (2018)

    Google Scholar 

  49. E Babanezhad and A Beheshti, Chem. Rev. Lett. 1, 82 (2018)

    Google Scholar 

  50. O Hod, J. Chem. Theory Comput. 8, 1360 (2012)

    Article  Google Scholar 

  51. Z Weng-Sieh, K Cherrey, N G Chopra, X Blasé, Y Miyamoto and A Rubio, Phys. Rev. B 15, 11229 (1995)

    Article  ADS  Google Scholar 

  52. D Golberg, Y Bando, P Dorozhkin and Z C Dong, M.R.S. Bull. 29, 38 (2004)

    Article  Google Scholar 

  53. Y Zhang, H Gu, K Suenaga and S Iijima, Chem. Phys. Lett. 279, 264 (1997)

    Article  ADS  Google Scholar 

  54. X Blasé, J C Charlier, A V De and R Car, Appl. Phys. A 68, 293 (1999)

    Article  ADS  Google Scholar 

  55. R Z Ma, D Golberg, Y Bando and T Sasaki, Phil. Trans. R. Soc. Lond. 362, 2161 (2004)

    Article  ADS  Google Scholar 

  56. W L Wang et al, J. Am. Chem. Soc. 128, 6530 (2006)

    Article  Google Scholar 

  57. E Vessally, S Soleimani-Amiri, A Hosseinian, L Edjlal and A Bekhradnia, Physica E 87, 308 (2017)

    Article  ADS  Google Scholar 

  58. F Behmagham, E Vessally, B Massoumi, A Hosseinian and L Edjlal, Superlatt. Microst. 100, 350 (2016)

    Article  ADS  Google Scholar 

  59. E Vessally, S Soleimani-Amiri, A Hosseinian, L Edjlali and A Bekhradnia, Appl. Surf. Sci. 396, 740 (2017)

    Article  ADS  Google Scholar 

  60. L Safari, E Vessally, A Bekhradnia, A Hosseinian and L Edjlali, Thin Solid Films 623, 157 (2017)

    Article  ADS  Google Scholar 

  61. P Srivastava, V Sharma and N K Jaiswal, Microelectron. Eng. 146, 62 (2015)

    Article  Google Scholar 

  62. A Soltani, M T Baei, A Ghasemi, E T Lemeski and K H Amirabadi, Superlatt. Microst. 75, 564 (2014)

    Article  ADS  Google Scholar 

  63. A K Srivastava, S K Pandey and N Misra, J. Nanostruct. Chem. 6, 103 (2016)

    Article  Google Scholar 

  64. H Ji, P Du, D Zhao, S Li, F Sun, E C Duin and W Liu, Environmental 263, 118357 (2020)

    Google Scholar 

  65. C Dang, F Sun, H Jiang, T Huang, W Liu, X Chen and H Ji, J. Hazardous Mater. 400, 123225 (2020)

    Article  Google Scholar 

  66. J Niu, H Lin, C Gong and X Sun, Environ. Sci. Technol. 47, 14341 (2013)

    Article  ADS  Google Scholar 

  67. H Ji, T Wang, T Huang, B Lai and W Liu, J. Cleaner Production 278, 123924 (2021)

    Article  Google Scholar 

  68. H Ji, W Liu, F Sun, T Huang, L Chen, Y Liu, J Qi, C Xie and D Zhao, Chem. Eng. J. (2021)

  69. T Oku, M Kuno, H Kitahara and I Narita, Int. J. Inorg. Mater. 3, 597 (2001)

    Article  Google Scholar 

  70. E Vessally, M D Esrafili, R Nurazar, P Nematollahi and A Bekhradnia, Struc. Chem. 28, 735 (2017)

  71. T Oku, I Narita, A Nishiwaki and N Koi, Defect. Diff. Forum 226, 113 (2004)

  72. M J Frisch et al, Gaussian 09, Revision A02, Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  73. R Keith, A Todd, A Millam and J M Semichem, GaussView, Version 6, Dennington, Inc., Shawnee Mission, KS (2016)

  74. A D Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  75. C Lee, W Yang and R G Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  76. L Chen, C Xu, X F Zhang and T Zhou, Physica E 41, 852 (2009)

    Article  ADS  Google Scholar 

  77. A S Rad, J. Alloys Compd. 682, 345 (2016)

    Article  Google Scholar 

  78. A S Rad and D Zareyee, Vacuum 130, 113 (2016)

    Article  ADS  Google Scholar 

  79. L H Gan and J Q Zhao, Physica E 41, 1249 (2009)

    Article  ADS  Google Scholar 

  80. A S Rad, Physica E 83, 135 (2016)

    Article  ADS  Google Scholar 

  81. A S Rad and K Ayub, Thin Solid Films 612, 179 (2016)

    Article  ADS  Google Scholar 

  82. G I Csonka, J. Mol. Struct. 584, 1 (2002)

    Article  Google Scholar 

  83. G Winnewisser, A G Maki and D R Johnson, J. Mol. Spectrosc. 39, 149 (1971)

    Article  ADS  Google Scholar 

  84. W Harshbarger, G H Lee, R F Porter and S H Bauer, Inorganic Chem. 8, 1683 (1969)

    Article  Google Scholar 

  85. R G Parr and R G Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

    Article  Google Scholar 

  86. R G Parr, L V Szentpály and S Liu, J. Am. Chem. Soc. 121, 1922 (1999)

    Article  Google Scholar 

  87. D L Strout, J. Phys. Chem. A 104, 3364 (2000)

    Article  Google Scholar 

  88. R Hoffmann, P V R Schleyer and H F Schaefer III, Angew. Chem. 47, 7164 (2008)

    Article  Google Scholar 

  89. H Li, S Zhu, M Zhang, P Wu, J Pang, W Zhu, W Jiang and H Li, ACS Omega 2, 5385 (2017)

    Article  Google Scholar 

  90. H Li, R Y Tay, S H Tsang, L Jing, M Zhu, F N Leong and E H T Teo, RSC Adv. 7, 12511 (2017)

    Article  ADS  Google Scholar 

  91. G Zhang, Z Liu, L Zhang, L Jing and K Shi, J. Chem. Sci. 125, 1169 (2013)

    Article  Google Scholar 

  92. Y K Yap, S Kida, T Aoyama, Y Mori and T Sasaki, Appl. Phys. Lett. 73, 915 (1998)

    Article  ADS  Google Scholar 

  93. Y K Yap, S Kida, Y Wada, M Yoshimura, Y Mori and T Sasaki, Diam. Relat. Mater. 9, 1228 (2000)

    Article  ADS  Google Scholar 

  94. L Antonov and S Stoyanov, Appl. Spectrosc. 47, 1030 (1993)

    Article  ADS  Google Scholar 

  95. L Antonov and D Nedeltcheva, Chem. Soc. Rev. 29, 217 (2000)

    Article  Google Scholar 

  96. A K Srivastava and N Misra, New J. Chem. 39, 2483 (2015)

    Article  Google Scholar 

  97. A K Srivastava and N Misra, Chem. Phys. Lett. 625, 5 (2015)

    Article  ADS  Google Scholar 

  98. A K Srivastava, S K Pandey and N Misra, Theor. Chem. Acc. 135, 1 (2016)

    Article  Google Scholar 

  99. M Solimannejad and M Noormohammadbeigi, J. Iran. Chem. Soc. 14, 471 (2017)

    Article  Google Scholar 

  100. M Rezaei-Sameti and N J Jukar, J. Nanostruct. Chem. 7, 293 (2017)

  101. M Kamalian, A Abbasi and Y Seyed Jalili, Int. J. Nano Dimens. 7, 329 (2016)

Download references

Acknowledgements

Dr Ambrish Kumar Srivastava acknowledges UGC, New Delhi, India for Start-Up Grant [30-466/2019 (BSR)]. Ratnesh Kumar acknowledges UGC, New Delhi, India for junior research fellowship [grant number 34009/(NET-DEC.2014)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambrish Kumar Srivastava.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, R., Misra, N. et al. Electronic structures and properties of small \((\hbox {BCN})_{x}\) (x =1–5) clusters and \((\hbox {BCN})_{12}\) nanotube. Pramana - J Phys 96, 12 (2022). https://doi.org/10.1007/s12043-021-02247-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02247-1

Keywords

PACS Nos

Navigation