Skip to main content
Log in

Electron-impact cross-sections of atmospherically relevant amines from intermediate to 5000 eV energy range

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The amines are major source of environment pollutants emitted in atmosphere from various anthropogenic sources. The non-thermal plasma (NTP)-based technology has proved successful in controlling the emitted amines reaching the atmosphere. The efficient NTP reactors rely on accurate electron–molecule collision data. The electron impact cross-sections are thus obtained for a few amines from ionisation threshold to 5000 eV using the single centre expansion (SCE) formalism. The molecular wave function of each target is obtained from the multicentre expansion of the Gaussian-type orbitals within a single determinant Hartree–Fock self-consistent field scheme. The expansion of wave function, density and potential is carried out at the centre of mass of the molecules. The interaction potential included to model the electron interaction in the target comprises static, correlation-polarisation and exchange types of potentials. The elastic cross-sections are obtained after solving the coupled scattering equations using Volterra integral form. The inelastic effects contributing to electron–molecule scattering are approximated by the ionisation cross-sections. The total cross-sections obtained after summing the elastic and ionisation cross-sections are in good agreement with the available data. We have also tried to explain the effect of polarisation potential on scattering cross-sections. A semiempirical formula based on the spatial extent of the molecule is proposed to estimate the cross-sections for the homologous series of amine molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L Pereira, P K Mondal and M Alves, Aromatic amines sources, environmental impact and remediation, in: Pollutants in buildings, water and living organisms edited by E Lichtfouse, J Schwarzbauer and D Robert (Springer International, Berlin, 2015)

    Google Scholar 

  2. X Ge, A S Wexler and S L Clegg, Atmos. Environ. 45, 524 (2011)

    ADS  Google Scholar 

  3. C J Tsai, M L Chen, A D Ye, M S Chou, S H Shen and I F Mao, Atmos. Environ. 42, 8246 (2008)

    ADS  Google Scholar 

  4. S Rappert and R Müller, Waste Manag. 25, 887 (2005)

    Google Scholar 

  5. S Sollinger and K Levsen, Atmos. Environ. 28, 2369 (1994)

    ADS  Google Scholar 

  6. Y Wang, J Zhang, A R Marcotte, M Karl, C Dye and P Herckes, Atmos. Res. 151, 72 (2015)

    Google Scholar 

  7. J Sintermann and A Neftel, Biogeosciences 12, 3225 (2015)

    ADS  Google Scholar 

  8. B Brunekreef and S T Holgate, Lancet 360, 1233 (2002)

    Google Scholar 

  9. J Ring, B Eberlein-Koenig and H Behrendt, Ann. Allergy Asthma Immunol. 87, 2 (2001)

    Google Scholar 

  10. K Donaldson, V Stone, A Seaton and W MacNee, Environ. Health Perspect. 109, 523 (2001)

    Google Scholar 

  11. H Duhme, S K Weiland and U Keil, Toxicol. Lett. 102, 307 (1998)

    Google Scholar 

  12. S M Murphy, A Sorooshian, J H Kroll, N L Ng, P Chhabra, C Tong, J D Surratt, E Knipping, R C Flagan and J H Seinfeld, Atmos. Chem. Phys. 7, 2313 (2007)

    ADS  Google Scholar 

  13. A A Assadi, J Palau, A Bouzaza, J Penya-Roja, V Martinez-Soriac and D Wolbert, J. Photochem. Photobiol. A: Chem.282, 1 (2014)

    Google Scholar 

  14. A A Assadi, A Bouzaza, M Lemasle and D Wolbert, J. Photochem. Photobiol. A: Chem. 282, 18 (2014)

    Google Scholar 

  15. W Tanthapanichakoon, P Khongprasarnkaln, T Charinpanitkul, H Tamon, N Sano and M Okazak, ScienceAsia 25, 57 (1999)

    Google Scholar 

  16. Z Ye, J Zhao, H Y Huang, F Ma and R Zhang, J. Hazardous Mater. 260, 32 (2013)

    Google Scholar 

  17. J Jolibois, K Takashima and A Mizuno, J. Electrostat. 70, 300 (2012)

    Google Scholar 

  18. F Ouni, A Khacef and J M Cormier, Plasma Chem. Plasma Process. 29, 119 (2013)

    Google Scholar 

  19. N Fourikis, K Takagi and M Morimoto, Astrophys. J. 191, L139 (1974)

    ADS  Google Scholar 

  20. D P Glavin, J P Dworkin and S A Sandford, Met. Planet. Sci. 43, 399 (2008)

    ADS  Google Scholar 

  21. N Kaifu, M Morimoto, K Nagane, K Akabane, T Iguchi and K Takagi, Astrophys. J. 191, L135 (1974)

    ADS  Google Scholar 

  22. S Muller, A Beelen, M Guelin, S Aalto, J H Black, F Combes, S Curran, P Theule and S Longmore, Astron. Astrophys. 535, A103 (2011)

    ADS  Google Scholar 

  23. M Förstel, A Bergantini, P Maksyutenko, S Gobi and R I Kaiser, Astrophys. J. 845, 83 (2017)

    ADS  Google Scholar 

  24. P D Gidfrey, R D Brown, B J Robinson and M W Sinclair, Astrophys. J. 13, L119 (1973)

    ADS  Google Scholar 

  25. P D Holtom, C J Bennett, Y Osamura, N J Mason and R I Kaiser, Astrophys. J. 626, 940 (2005)

    ADS  Google Scholar 

  26. C Szmytkowski and A M Krzysztofowicz, J. Phys. B 28, 4291, 28 (1995)

    Google Scholar 

  27. F M Silva, M H F Bettega and S Sanchez, Eur. Phys. J. D 68, 12 (2014)

    ADS  Google Scholar 

  28. M Vinodkumar, C Limbachiya, K N Joshipura, B Vaishnav and S Gangopadhyay, J. Phys. Conf. Ser. 115, 012013 (2008)

    Google Scholar 

  29. D Shi, J Sun and Z Zhu, Eur. Phys. J. D 57, 179 (2010)

    ADS  Google Scholar 

  30. C Szmytkowski, A Domaracka, P Możejko and E Ptasinska-Denga, Phys. Rev. A 75, 052721 (2007)

    ADS  Google Scholar 

  31. P Możejko, B Żywicka and A Domaracka, IOP Conf. Ser.: J. Phys.: Conf. Ser. 875, 062048 (2017)

    Google Scholar 

  32. S Singh, R Naghma, J Kaur and B Antony, J. Chem. Phys. 145, 034309 (2016)

    ADS  Google Scholar 

  33. F A Gianturco, D G Thompson and A K Jain, Computational methods for electron molecule collisions edited by W M Huo and F A Gianturco (Plenum, New York, 1995)

    Google Scholar 

  34. F A Gianturco, R R Lucchese, N Sanna and A Talamo, A generalized single centre approach for treating electron scattering from polyatomic molecules, in: Electron collisions with molecules, clusters, and surfaces edited by H Ehrhardt and L A Morgan (Plenum, New York, 1994)

    Google Scholar 

  35. S Hara, J. Phys. Soc. Jpn. 22, 710 (1967)

    ADS  Google Scholar 

  36. J P Perdew and A Zunger, Phys. Rev. B 23, 5048 (1981)

    ADS  Google Scholar 

  37. R Curik, F A Gianturco and N Sanna, J. Phys. B 33, 2705 (2000)

    ADS  Google Scholar 

  38. A Jain and F A Gianturco, J. Phys. B 24, 2387 (1991)

    ADS  Google Scholar 

  39. N Sanna and F A Gianturco, Comput. Phys. Commun. 128, 139 (2000)

    ADS  Google Scholar 

  40. A P P Natalense and R R Lucchese, J. Chem. Phys. 111, 5344 (1999)

    ADS  Google Scholar 

  41. F A Gianturco, R R Lucchese and N Sanna, J. Chem. Phys. 100, 6464 (1994)

    ADS  Google Scholar 

  42. Y K Kim, W Hwang, N M Weinberger, M A Ali and M E Rudd, J. Chem. Phys. 106, 1026 (1997)

    ADS  Google Scholar 

  43. N Sanna, I Baccarelli and G Morelli, Comput. Phys. Commun. 180, 2544 (2009)

    ADS  Google Scholar 

  44. GAUSSIAN 03, Gaussian, Inc, Wallingford, CT

  45. N Sanna and F A Gianturco, Comput. Phys. Commun. 114, 142 (1998)

    ADS  Google Scholar 

  46. Y H Jiang, J F Sun and L D Wan, Phys. Rev. A 62, 062712 (2000)

    ADS  Google Scholar 

  47. G Staszewska, D W Schwenke, D Thirumalai and D G Truhlar, Phys. Rev. A 28, 2740 (1983)

    ADS  Google Scholar 

  48. F Blanco and G García, Phys. Rev. A 67, 022701 (2003).

    ADS  Google Scholar 

  49. S Kaur, A Bharadvaja and K L Baluja, Phys. Rev. A 83, 062707 (2011)

    ADS  Google Scholar 

  50. A Bharadvaja, S Kaur and K L Baluja, Phys. Rev. A 87, 062703 (2013)

    ADS  Google Scholar 

  51. A Bharadvaja, S Kaur and K L Baluja, Phys. Rev. A 91, 032701 (2015)

    ADS  Google Scholar 

  52. A Bharadvaja, S Kaur and K L Baluja, Pramana – J. Phys. 89: 30 (2017)

    ADS  Google Scholar 

  53. A Bharadvaja, S Kaur and K L Baluja, Phys. Plasmas 26, 063506 (2019)

    ADS  Google Scholar 

  54. A Bharadvaja, S Kaur and K L Baluja, Eur. Phys. J. D 73, 199 (2019)

    ADS  Google Scholar 

  55. A Bharadvaja, S Kaur and K L Baluja, Eur. Phys. J. D 73, 251 (2019)

    ADS  Google Scholar 

  56. K Fedus and G Karwasz, Eur. Phys. J. D 71, 138 (2017)

    ADS  Google Scholar 

  57. J Tennyson, Phys. Rep. 491, 29 (2010)

    ADS  Google Scholar 

  58. NIST, Computational Chemistry Comparison and Benchmark DataBase, http://cccbdb.nist.gov

  59. D R Lide, CRC Handbook of chemistry and physics, 74 edn (CRC Press, Boca Raton, FL, 1993)

    Google Scholar 

Download references

Acknowledgements

Anand Bharadvaja is thankful to Prof. Robert Lucchese, Department of Chemistry, Texas AM University for his guidance on single centre expansion method and to Dr Fernando R Clemente, Gaussian Inc for giving useful insights about GAUSSIAN-16 during the workshop held in New Delhi in January 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Bharadvaja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xls 58 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadvaja, A., Kaur, S. & Baluja, K.L. Electron-impact cross-sections of atmospherically relevant amines from intermediate to 5000 eV energy range. Pramana - J Phys 94, 73 (2020). https://doi.org/10.1007/s12043-020-1923-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1923-z

Keywords

PACS Nos

Navigation