Skip to main content
Log in

Observation of Fano resonance in silver nanocube–nanosphere dimer

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we perform a theoretical investigation of the plasmon coupling in silver (Ag) nanocube–nanosphere dimer using finite difference time domain (FDTD) technique. Due to plasmonic Fano resonance, we observe a pronounced dip in the absorption spectrum, which is induced by the destructive interference between the bright dipole mode from the Ag nanocube and the dark quadrupole mode from the Ag nanosphere. We study the effects on the Fano resonance by varying the dimensions of the nanocube and nanosphere, as well as the inter-surface gap distance between them. In addition, we vary the local dielectric environment surrounding the dimer and find a wide tuning in the Fano resonance line-shape. We calculate the localised surface plasmon resonance (LSPR) sensitivity of the nanocube–nanosphere dimer to the surrounding environment and find a high figure of merit (FOM) of 32.23, which indicates its promising potential as a plasmonic biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M Rycenga, C M Cobley, J Zeng, W Y Li, C H Moran, Q Zhang, D Qin and Y N Xia, Chem. Rev. 111, 3669 (2011)

    Google Scholar 

  2. S Y Lee, S H Kim, S G Jang, C J Heo, J W Shim and S M Yang, Anal. Chem. 83, 9174 (2011)

    Google Scholar 

  3. N Halas, S Lal, W Chang, S Link and P Nordlander, Chem. Rev. 111, 3913 (2011)

    Google Scholar 

  4. H H Wang, C Y Liu, S B Wu, N W Liu, C Y Peng, T H Chan, C F Hsu, J K Wang and Y L Wang, Adv. Mater. 18, 491 (2006)

    Google Scholar 

  5. K M Mayer and J H Hafner, Chem. Rev. 111, 3828 (2011)

    Google Scholar 

  6. A Kinkhabwala, Z Yu, S Fan, Y Avlasevich, K Muellen and W Moerner, Nat. Photon. 3, 654 (2009)

    ADS  Google Scholar 

  7. N Liu, M L Tang, M Hentschel, H Giessen and A P Alivisatos, Nat. Mater. 10, 631 (2011)

    ADS  Google Scholar 

  8. R F Oulton, V J Sorger, D A Genov, D F P Pile and X Zhang, Nat. Photon. 2, 496 (2008)

    Google Scholar 

  9. K A Willets and R P V Duyne, Ann. Rev. Phys. Chem. 58, 267 (2007)

    ADS  Google Scholar 

  10. H Atwater and A Polman, Nat. Mater. 9, 205 (2010)

    ADS  Google Scholar 

  11. G Zheng, L Xu and Y Liu, Pramana – J. Phys. 86, 1091 (2016)

  12. S F Shayesteh and M Saie, Pramana – J. Phys. 85, 1245 (2015)

  13. J Ye, F Wen, H Sobhani, J B Lassiter, P V Dorpe, P Nordlander and N J Halas, Nano Lett. 12, 1660 (2012)

    ADS  Google Scholar 

  14. N Verellen, P V Dorpe, C Huang, K Lodewijks, G A E Vandenbosch, L Lagae and V V Moshchalkov, Nano Lett. 11, 391 (2011)

    ADS  Google Scholar 

  15. C Wu, A B Khanikaev, R Adato, N Arju, A A Yanik, H Altug and G Shvets, Nature Mater. 11, 69 (2012)

    ADS  Google Scholar 

  16. J Yan, P Liu, Z Lin, H Wang, H Chen, C Wang and G Yang, ACS Nano 9, 2968 (2015)

    Google Scholar 

  17. J Fan, C Wu, K Bao, J Bao, R Bardhan, N Halas, V Manoharan, P Nordlander, G Shvets and F Capasso, Science 328, 1135 (2010)

    ADS  Google Scholar 

  18. K Woo, L Shao, H Chen, Y Liang, J Wang and H Lin, ACS Nano 5, 5976 (2011)

    Google Scholar 

  19. N A Mirin, K Bao and P Nordlander, J. Phys. Chem. A 113, 4028 (2009)

    Google Scholar 

  20. K Bao, N A Mirin and P Nordlander, Appl. Phys. A 100, 333 (2010)

    ADS  Google Scholar 

  21. O Pena-Rodriguez, U Pal, M Campoy-Quiles, L Rodriguez-Fernandez, M Garriga and M Alonso, J. Pys. Chem. C 115, 6410 (2011)

    Google Scholar 

  22. G Bachelier, I Russier-Antoine, E Benichou, C Jonin, N Fatti, F Vallee and P Brevet, Phys. Rev. Lett. 101, 197401 (2008)

    ADS  Google Scholar 

  23. D Wu, S Jiang and X Liu, J. Phys. Chem. C 115, 23797 (2011)

    Google Scholar 

  24. L Brown, H Sobhani, J Lassiter, P Nordlander and N Halas, ACS Nano 4, 819 (2010)

    Google Scholar 

  25. T Cao, L Mao, Y Qiu, L Lu, A Banas, K Banas, R E Simpson and H Chui, Adv. Opt. Mater. 7, 1801172 (2019)

    Google Scholar 

  26. F Qin, Y Lai, J Yang, X Cui, H Ma, J Wang and H Q Lin, Nanoscale 9, 13222 (2017)

    Google Scholar 

  27. D Lee and S Yoon, J. Phys. Chem. C 119, 7873 (2015)

    Google Scholar 

  28. X Kou, Z Sun, Z Yang, H Chen and J Wang, Langmuir 25, 1692 (2009)

    Google Scholar 

  29. Y Wang, Y Zheng, C Z Huang and Y Xia, J. Am. Chem. Soc. 135, 1941 (2013)

    Google Scholar 

  30. P B Johnson and R W Christy, Phys. Rev. B 6, 4370 (1972)

    ADS  Google Scholar 

  31. M R C Mahdy, T Zhang, M Danesh and W Ding, Sci. Rep. 7, 6938 (2017)

    ADS  Google Scholar 

  32. T Liu, Z Zhou, C Jin and X Wang, Plasmonics 8, 885 (2013)

    Google Scholar 

  33. X Ci, B Wu, M Song, Y Liu, G Chen, E Wu and H Zeng, Appl. Phys. A 117, 955 (2014)

    Google Scholar 

  34. A Das and M A Talukder, AIP Adv. 8, 025302 (2018)

    ADS  Google Scholar 

  35. C F Bohren and D R Huffman, Absorption and scattering of light by small particles (Wiley, New York, 1983).

    Google Scholar 

  36. Z Yang, Z Zhang, L Zhang, Q Li, Z Hao and Q Wang, Opt. Lett. 36, 1542 (2011)

    ADS  Google Scholar 

  37. P Nordlander, C Oubre, E Prodan, K Li and M I Stockman, Nano Lett. 4, 899 (2004)

    ADS  Google Scholar 

  38. E Prodan, C Radloff, N J Halas and P A Nordlander, Science 302, 419 (2003)

    ADS  Google Scholar 

  39. J P Clarkson, J Winans and P M Fauchet, Opt. Mater. Exp. 1, 970 (2011)

    ADS  Google Scholar 

  40. K H Su, Q-H Wei, X Zhang, J J Mock, D R Smith and S Schultz, Nano Lett. 3, 1087 (2003)

    ADS  Google Scholar 

  41. J R Krenn, G Schider, W Rechberger, B Lamprecht, A Leitner and F R Aussenegg, Appl. Phys. Lett. 77, 3379 (2000)

    ADS  Google Scholar 

  42. F Zhou, Z-Y Li, Y Liu and Y Xia, J. Phys. Chem. C 112, 20223 (2008)

    Google Scholar 

  43. S Zhang, D A Genov, Y Wang, M Liu and X Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    ADS  Google Scholar 

  44. H-D Deng, X-Y Chen, Y Xu and A E Miroshnichenko, Nanoscale 7, 20405 (2015)

    ADS  Google Scholar 

  45. A A Yanik, A E Cetin, M Huang, A Artar, S H Mousavi, A Khanikaev, J H Connor, G Shvets and H Altug, PNAS 108, 11784 (2011)

    ADS  Google Scholar 

  46. M Yang, Z Zhang, L Liang, X Yan, D Wei, X Song, H Zhang, Y Lu, M Wang and J Yao, Appl. Opt. 58, 6268 (2019)

    ADS  Google Scholar 

  47. Z Wang, C Wang, F Sun, Z Fu, Z Xiao, J Wang and H Tian, J. Opt. Soc. Am. B 36, 215 (2019)

    ADS  Google Scholar 

  48. K-L Lee, S-H Wu, C-W Lee and P-K Wei, Opt. Exp. 19, 24530 (2011)

    ADS  Google Scholar 

  49. K M Mayer, F Hao, S Lee, P Nordlander and J H Hafner, Nanotechnology 21, 255503 (2010)

    ADS  Google Scholar 

  50. L J Sherry, S H Chang, G C Schatz, R P V Duyne, B J Wiley and Y N Xia, Nano Lett. 5, 2034 (2005)

    ADS  Google Scholar 

  51. S Zhang, K Bao, N J Halas, H Xu and P Nordlander, Nano Lett. 11, 1657 (2011)

    ADS  Google Scholar 

  52. J Lassiter, H Sobhani, J Fan, J Kundu, F Capasso, P Nordlander and N Halas, Nano Lett. 10, 3184 (2010)

    ADS  Google Scholar 

  53. F Hao, Y Sonnefraud, P V Dorpe, S A Maier, N J Halas and P Nordlander, Nano Lett. 8, 3983 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Ahmed, A. & Hasan, M.M. Observation of Fano resonance in silver nanocube–nanosphere dimer. Pramana - J Phys 94, 128 (2020). https://doi.org/10.1007/s12043-020-01991-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01991-0

Keywords

PACS Nos

Navigation